Типы и характеристики лазеров. Физические свойства лазерного излучения Уникальными свойствами лазерного излучения являются

Первым принцип действия лазера, физика которого основывалась на законе излучения Планка, теоретически обосновал Эйнштейн в 1917 году. Он описал поглощение, спонтанное и вынужденное электромагнитное излучение с помощью вероятностных коэффициентов (коэффициенты Эйнштейна).

Первопроходцы

Теодор Мейман был первым, кто продемонстрировал принцип действия основанный на оптической накачке с помощью лампы-вспышки синтетического рубина, производившего импульсное когерентное излучение с длиной волны 694 нм.

В 1960 г. иранские ученые Джаван и Беннетт создали первый газовый квантовый генератор с использованием смеси газов He и Ne в соотношении 1:10.

В 1962 году Р. Н. Холл продемонстрировал первый из арсенида галлия (GaAs), излучавший на длине волны 850 нм. Позже в том же году Ник Голоняк разработал первый полупроводниковый квантовый генератор видимого света.

Устройство и принцип действия лазеров

Каждая лазерная система состоит из активной среды, помещенной между парой оптически параллельных и высокоотражающих зеркал, одно из которых полупрозрачное, и источника энергии для ее накачки. В качестве среды усиления может выступать твердое тело, жидкость или газ, которые обладают свойством усиливать амплитуду световой волны, проходящей через него, вынужденным излучением с электрической или оптической накачкой. Вещество помещается между парой зеркал таким образом, что свет, отражающийся в них, каждый раз проходит через него и, достигнув значительного усиления, проникает сквозь полупрозрачное зеркало.

Двухуровневые среды

Рассмотрим принцип действия лазера с активной средой, атомы которой имеют только два уровня энергии: возбужденный E 2 и базовый Е 1 . Если атомы с помощью любого механизма накачки (оптического, электрического разряда, пропускания тока или бомбардировки электронами) возбуждаются до состояния E 2 , то через несколько наносекунд они вернутся в основное положение, излучая фотоны энергии hν = E 2 - E 1 . Согласно теории Эйнштейна, эмиссия производится двумя различными способами: либо она индуцируется фотоном, либо это происходит спонтанно. В первом случае имеет место вынужденное излучение, а во втором - спонтанное. При тепловом равновесии вероятность вынужденного излучения значительно ниже, чем спонтанного (1:10 33), поэтому большинство обычных источников света некогерентны, а лазерная генерация возможна в условиях, отличных от теплового равновесия.

Даже при очень сильной накачке населенность двухуровневых систем можно лишь сделать равной. Поэтому для достижения инверсной населенности оптическим или иным способом накачки требуются трех- или четырехуровневые системы.

Многоуровневые системы

Каков принцип действия трехуровневого лазера? Облучение интенсивным светом частоты ν 02 накачивает большое количество атомов с самого низкого уровня энергии E 0 до верхнего Е 2 . Безызлучательный переход атомов с E 2 до E 1 устанавливает инверсию населенности между E 1 и E 0 , что на практике возможно только, когда атомы длительное время находятся в метастабильном состоянии E 1, и переход от Е 2 до Е 1 происходит быстро. Принцип действия трехуровневого лазера заключается в выполнении этих условий, благодаря чему между E 0 и E 1 достигается инверсия населенности и происходит усиление фотонов энергией Е 1 -Е 0 индуцированного излучения. Более широкий уровень E 2 мог бы увеличить диапазон поглощения длин волн для более эффективной накачки, следствием чего является рост вынужденного излучения.

Трехуровневая система требует очень высокой мощности накачки, так как нижний уровень, задействованный в генерации, является базовым. В этом случае для того, чтобы произошла инверсия населенности, до состояния E 1 должно быть накачано более половины от общего числа атомов. При этом энергия расходуется впустую. Мощность накачки можно значительно уменьшить, если нижний уровень генерации не будет базовым, что требует, по крайней мере, четырехуровневой системы.

В зависимости от природы активного вещества, лазеры подразделяются на три основные категории, а именно, твердый, жидкий и газовый. С 1958 года, когда впервые наблюдалась генерация в кристалле рубина, ученые и исследователи изучили широкий спектр материалов в каждой категории.

Твердотельный лазер

Принцип действия основан на использовании активной среды, которая образуется путем добавления в изолирующую кристаллическую решетку металла переходной группы (Ti +3 , Cr +3 , V +2 , Со +2 , Ni +2 , Fe +2 , и т. д.), редкоземельных ионов (Ce +3 , Pr +3 , Nd +3 , Pm +3 , Sm +2 , Eu +2,+3 , Tb +3 , Dy +3 , Ho +3 , Er +3 , Yb +3 , и др.), и актиноидов, подобных U +3 . ионов отвечают только за генерацию. Физические свойства базового материала, такие как теплопроводность и имеют важное значение для эффективной работы лазера. Расположение атомов решетки вокруг легированного иона изменяет ее энергетические уровни. Различные длины волн генерации в активной среде достигаются путем легирования различных материалов одним и тем же ионом.

Гольмиевый лазер

Примером является квантовый генератор, в котором гольмий заменяет атом базового вещества кристаллической решетки. Ho:YAG является одним из лучших генерационных материалов. Принцип действия гольмиевого лазера состоит в том, что алюмоиттриевый гранат легируется ионами гольмия, оптически накачивается лампой-вспышкой и излучает на длине волны 2097 нм в ИК-диапазоне, хорошо поглощаемом тканями. Используется этот лазер для операций на суставах, в лечении зубов, для испарения раковых клеток, почечных и желчных камней.

Полупроводниковый квантовый генератор

Лазеры на квантовых ямах недороги, позволяют массовое производство и легко масштабируются. Принцип действия полупроводникового лазера основан на использовании диода с p-n-переходом, который производит свет определенной длины волны путем рекомбинации носителя при положительном смещении, подобно светодиодам. LED излучают спонтанно, а лазерные диоды - вынужденно. Чтобы выполнить условие инверсии заселенности, рабочий ток должен превышать пороговое значение. Активная среда в полупроводниковом диоде имеет вид соединительной области двух двумерных слоев.

Принцип действия лазера данного типа таков, что для поддержания колебаний никакого наружного зеркала не требуется. Отражающая способность, создаваемая благодаря слоев и внутреннему отражению активной среды, для этой цели достаточна. Торцевые поверхности диодов скалываются, что обеспечивает параллельность отражающих поверхностей.

Соединение, образованное одного типа, называется гомопереходом, а созданное соединением двух разных - гетеропереходом.

Полупроводники р и n типа с высокой плотностью носителей образуют р-n-переход с очень тонким (≈1 мкм) обедненным слоем.

Газовый лазер

Принцип действия и использование лазера этого типа позволяет создавать устройства практически любой мощности (от милливатта до мегаватта) и длин волн (от УФ до ИК) и позволяет работать в импульсном и непрерывном режимах. Исходя из природы активных сред, различают три типа газовых квантовых генераторов, а именно атомные, ионные, и молекулярные.

Большинство газовых лазеров накачиваются электрическим разрядом. Электроны в разрядной трубке ускоряются электрическим полем между электродами. Они сталкиваются с атомами, ионами или молекулами активной среды и индуцируют переход на более высокие энергетические уровни для достижения состояния населения инверсии и вынужденного излучения.

Молекулярный лазер

Принцип действия лазера основан на том, что, в отличие от изолированных атомов и ионов, в атомных и ионных квантовых генераторах молекулы обладают широкими энергетическими зонами дискретных энергетических уровней. При этом каждый электронный энергетический уровень имеет большое число колебательных уровней, а те, в свою очередь, - несколько вращательных.

Энергия между электронными энергетическими уровнями находится в УФ и видимой областях спектра, в то время как между колебательно-вращательными уровнями - в дальней и ближней ИК областях. Таким образом, большинство молекулярных квантовых генераторов работает в далекой или ближней ИК областях.

Эксимерные лазеры

Эксимеры представляют собой такие молекулы как ArF, KrF, XeCl, которые имеют разделенное основное состояние и стабильны на первом уровне. Принцип действия лазера следующий. Как правило, в основном состоянии число молекул мало, поэтому прямая накачка из основного состояния не представляется возможной. Молекулы образуются в первом возбужденном электронном состоянии путем соединения обладающих большой энергией галогенидов с инертными газами. Населенность инверсии легко достигается, так как число молекул на базовом уровне слишком мало, по сравнению с возбужденным. Принцип действия лазера, кратко говоря, состоит в переходе из связанного возбужденного электронного состояния в диссоциативное основное состояние. Населенность в основном состоянии всегда остается на низком уровне, потому что молекулы в этой точке диссоциируют на атомы.

Устройство и принцип действия лазеров состоит в том, что разрядную трубку наполняют смесью галогенида (F 2) и редкоземельного газа (Ar). Электроны в ней диссоциируют и ионизируют молекулы галогенида и создают отрицательно заряженные ионы. Положительные ионы Ar + и отрицательные F - реагируют и производят молекулы ArF в первом возбужденном связанном состоянии с последующим их переходом в отталкивающее базовое состояние и генерацией когерентного излучения. Эксимерный лазер, принцип действия и применение которого мы сейчас рассматриваем, может применяться для накачки активной среды на красителях.

Жидкостный лазер

По сравнению с твердыми веществами, жидкости более однородны, и обладают большей плотностью активных атомов, по сравнению с газами. В дополнение к этому, они не сложны в производстве, позволяют просто отводить тепло и могут быть легко заменены. Принцип действия лазера состоит в использовании в качестве активной среды органических красителей, таких как DCM (4-дицианометилен-2-метил-6-p- диметиламиностирил-4Н-пиран), родамина, стирила, LDS, кумарина, стильбена, и т. д., растворенных в надлежащем растворителе. Раствор молекул красителя возбуждается излучением, длина волны которого обладает хорошим коэффициентом поглощения. Принцип действия лазера, кратко говоря, заключается в генерации на большей длине волны, называемой флуоресценцией. Разница между поглощенной энергией и излучаемыми фотонами используется безызлучательными энергетическими переходами и нагревает систему.

Более широкая полоса флуоресценции жидкостных квантовых генераторов обладает уникальной особенностью - перестройкой длины волны. Принцип действия и использование лазера этого типа как настраиваемого и когерентного источника света, приобретает все большее значение в спектроскопии, голографии, и в биомедицинских приложениях.

Недавно квантовые генераторы на красителях стали использоваться для разделения изотопов. В этом случае лазер избирательно возбуждает один из них, побуждая вступить в химическую реакцию.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Институт транспортной техники и систем управления

Кафедра «Технология транспортного машиностроения и ремонта подвижного состава»


Реферат

по дисциплине: «Электрофизические и электрохимические методы обработки»

Тема: «Типы и характеристики лазеров»


Введение


Изобретение лазера стоит в одном ряду с наиболее выдающимися достижениями науки и техники XX века. Первый лазер появился в 1960 г., и сразу же началось бурное развитие лазерной техники. В короткое время были созданы разнообразные типы лазеров и лазерных устройств, предназначенных для решения конкретных научных и технических задач. Лазеры уже успели завоевать прочные позиции во многих отраслях народного хозяйства. Как заметил академик А.П. Александров, всякий мальчишка теперь знает слово лазер. И все же, что такое лазер, чем он интересен и полезен? Один из основоположников науки о лазерах - квантовой электроники - академик Н.Г. Басов отвечает на этот вопрос так: Лазер - это устройство, в котором энергия, например тепловая, химическая, электрическая, преобразуется в энергию электромагнитного поля - лазерный луч. При таком преобразовании часть энергии неизбежно теряется, но важно то, что полученная в результате лазерная энергия обладает несравненно более высоким качеством. Качество лазерной энергии определяется ее высокой концентрацией и возможностью передачи на значительное расстояние. Лазерный луч можно сфокусировать в крохотное пятнышко диаметра порядка длины световой волны и получить плотность энергии, превышающую на сегодняшний день плотность энергии ядерного взрыва.

С помощью лазерного излучения уже удалось достичь самых высоких значений температуры, давления, напряженности магнитного поля. Наконец, лазерный луч является самым емким носителем информации и в этой роли - принципиально новым средством ее передачи и обработки. Широкое применение лазеров в современной науке и технике объясняется специфическими свойствами лазерного излучения. Лазер - это генератор когерентного света. В отличии от других источников света (например, ламп накаливания или ламп дневного света) лазер дает оптическое излучение, характеризующееся высокой степенью упорядоченности светового поля или, как говорят, высокой степенью когерентности. Такое излучение отличается высокой монохроматичностью и направленностью. В наши дни лазеры успешно трудятся на современном производстве, справляясь с самыми разнообразными задачами. Лазерным лучом раскраивают ткани и режут стальные листы, сваривают кузова автомобилей и приваривают мельчайшие детали в радиоэлектронной аппаратуре, пробивают отверстия в хрупких и сверхтвердых материалах. Причем лазерная обработка материалов позволяет повысить эффективность и конкурентоспособность по сравнению с другими видами обработки. Непрерывно расширяется область применения лазеров в научных исследованиях - физических, химических, биологических.

Замечательные свойства лазеров - исключительно высокая когерентность и направленность излучения, возможность генерирования когерентных волн большой интенсивности в видимой, инфракрасной и ультрафиолетовой областях спектра, получение высоких плотностей энергии как в непрерывном, так и в импульсном режиме - уже на заре квантовой электроники указывало на возможность широкого их применения для практических целей. С начала своего возникновения лазерная техника развивается исключительно высокими темпами. Появляются новые типы лазеров и одновременно усовершенствуются старые: создаются лазерные установки с необходимым для различных конкретных целей комплексом характеристик, а также различного рода приборы управления лучом, все более и более совершенствуется измерительная техника. Это послужило причиной глубокого проникновения лазеров во многие отрасли народного хозяйства, и в частности в машино- и приборостроение.

Надо особо отметить, что освоение лазерных методов или, иначе говоря, лазерных технологий значительно повышает эффективность современного производства. Лазерные технологии позволяют осуществлять наиболее полную автоматизацию производственных процессов.

Огромны и впечатляющи достижения лазерной техники сегодняшнего дня. Завтрашний день обещает еще более грандиозные свершения. С лазерами связаны многие надежды: от создания объемного кино до решения таких глобальных проблем, как установление сверхдальней наземной и подводной оптической связи, разгадку тайн фотосинтеза, осуществление управляемой термоядерной реакции, появление систем с большим объемом памяти и быстродействующими устройствами ввода - вывода информации.


1. Классификация лазеров


Принято различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазерное излучение, когда на его вход (а сам он уже находится в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стимулирует возбужденные частицы к отдаче энергии. Происходит лавинообразное усиление. Таким образом - на входе слабое излучение, на выходе - усиленное. С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуждают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбужденном состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких частиц с верхнего уровня на нижний. Это приводит к возникновению стимулированного излучения.

Второй подход к классификации лазеров связан с физическим состоянием активного вещества. С этой точки зрения лазеры бывают твердотельными (например, рубиновый, стеклянный или сапфировый), газовыми (например, гелий-неоновый, аргоновый и т.п.), жидкостными, если в качестве активного вещества используется полупроводниковый переход, то лазер называют полупроводниковым.

Третий подход к классификации связан со способом возбуждения активного вещества. Различают следующие лазеры: с возбуждением за счет оптического излучения, с возбуждением потоком электронов, с возбуждением солнечной энергией, с возбуждением за счет энергий взрывающихся проволочек, с возбуждением химической энергией, с возбуждением с помощью ядерного излучения. Различают также лазеры по характеру излучаемой энергии и ее спектральному составу. Если энергия излучается импульсно, то говорят об импульсных лазерах, если непрерывно, то лазер называют лазером с непрерывным излучением. Есть лазеры и со смешанным режимом работы, например полупроводниковые. Если излучение лазера сосредоточено в узком интервале длин волн, то лазер называют монохроматичным, если в широком интервале, то говорят о широкополосном лазере.

Еще один вид классификации основан на использовании понятия выходной мощности. Лазеры, у которых непрерывная (средняя) выходная мощность более 106 Вт, называют высокомощными. При выходной мощности в диапазоне 105…103 Вт имеем лазеры средней мощности. Если же выходная мощность менее 10-3 Вт, то говорят о маломощных лазерах.

В зависимости от конструкции открытого зеркального резонатора различают лазеры с постоянной добротностью и лазеры с модулированной добротностью - у такого лазера одно из зеркал может быть размещено, в частности, на оси электродвигателя, который вращает это зеркало. В данном случае добротность резонатора периодически меняется от нулевого до максимального значения. Такой лазер называют лазером с Q-модуляцией.


2. Характеристики лазеров


Одной из характеристик лазеров является длина волны излучаемой энергии. Диапазон волн лазерного излучения простирается от рентгеновского участка до дальнего инфракрасного, т.е. от 10-3 до 102 мкм. За областью 100 мкм лежит, образно говоря, целина. Но она простирается только до миллиметрового участка, который осваивается радистами. Этот неосвоенный участок непрерывно сужается, и есть надежда, что его освоение завершится в ближайшее время. Доля, приходящаяся на различные типы генераторов, неодинакова. Наиболее широкий диапазон у газовых квантовых генераторов.

Другой важной характеристикой лазеров является энергия импульса. Она измеряется в джоулях и наибольшей величины достигает у твердотельных генераторов - порядка 103 Дж. Третьей характеристикой является мощность. Газовые генераторы, которые излучают непрерывно, имеют мощность от 10-3 до 102 Вт. Милливаттную мощность имеют генераторы, использующие в качестве активной среды гелий-неоновую смесь. Мощность порядка 100 Вт имеют генераторы на CO2. С твердотельными генераторами разговор о мощности имеет особый смысл. К примеру, если взять излучаемую энергию в 1 Дж, сосредоточенную в интервале в одну секунду, то мощность составит 1 Вт. Но длительность излучения генератора на рубине составляет 10-4 с, следовательно, мощность составляет 10000 Вт, т.е. 10 кВт. Если же длительность импульса уменьшена с помощью оптического затвора до 10-6 с, мощность составляет 106 Вт, т.е. мегаватт. Это не предел! Можно увеличить энергию в импульсе до 103 Дж и сократить ее длительность до 10-9с и тогда мощность достигнет 1012 Вт. А это очень большая мощность. Известно, что когда на металл приходится интенсивность луча, достигающая 105 Вт/см2, то начинается плавление металла, при интенсивности 107 Вт/см2 - кипение металла, а при 109 Вт/см2 лазерное излучение начинает сильно ионизировать пары вещества, превращая их в плазму.

Еще одной важной характеристикой лазера является расходимость лазерного луча. Наиболее узкий луч имеют газовые лазеры. Он составляет величину в несколько угловых минут. Расходимость луча твердотельных лазеров около 1…3 угловых градусов. Полупроводниковые лазеры имеют лепестковый раскрыв излучения: в одной плоскости около одного градуса, в другой - около 10…15 угловых градусов.

Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено излучение, т.е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10-10, т.е. значительно выше, чем у газоразрядных ламп, которые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т. е. не отличаются высокой монохроматичностью.

Очень важной характеристикой лазеров является коэффициент полезного действия. У твердотельных он составляет от 1 до 3,5%, у газовых 1…15%, у полупроводниковых 40…60%. Вместе с тем принимаются всяческие меры для повышения кпд лазеров, ибо низкий кпд приводит к необходимости охлаждения лазеров до температуры 4…77 К, а это сразу усложняет конструкцию аппаратуры.


2.1 Твердотельные лазеры


Твердотельные лазеры делятся на импульсные и непрерывные. Среди импульсных лазеров более распространены устройства на рубине и неодимовом стекле. Длина волны неодимового лазера составляет l = 1,06 мкм. Эти устройства представляют собой относительно большие стержни, длина которых достигает 100 см, а диаметр - 4-5 см. Энергия импульса генерации такого стержня - 1000 дж за 10-3 сек.

Лазер на рубине также отличается большой мощностью импульса, при длительности 10-3 сек его энергия составляет сотни дж. Частота повторения импульсов может достигать нескольких кГц.

Самые известные лазеры непрерывного действия изготавливаются на флюорите кальция с примесью диспрозия и лазеры на иттриево-алюминиевом гранате, в котором присутствуют примеси атомов редкоземельных металлов. Длина волны этих лазеров находится в области от 1 до 3 мкм. Мощность импульса составляет примерно 1 вт либо его доли. Лазеры на иттриево-алюминиевом гранате способы обеспечить мощность импульса до нескольких десятков вт.

Как правило, в твердотельных лазерах используется многомодовый режим генерации. Одномодовая генерация может быть получена при введении в резонатор селектирующих элементов. Подобное решение было вызвано снижением генерируемой мощности излучения.

Сложность производства твердотельных лазеров заключается в необходимости выращивания больших монокристаллов или варки больших образцов прозрачного стекла. Преодолеть эти трудности позволило изготовление жидкостных лазеров, где активная среда представлена жидкостью, в которую введены редкоземельные элементы. Тем не менее жидкостные лазеры имеют ряд недостатков, ограничивающих область их использования.


2.2 Жидкостные лазеры


Жидкостными называются лазеры с жидкой активной средой. Основным преимуществом этого вида устройств является возможность циркуляции жидкости и, соответственно, ее охлаждение. В результате и в импульсном, и в непрерывном режиме можно получить больше энергии.

Первые жидкостные лазеры производились на основе редкоземельных хелатов. Недостатком этих лазеров является низкий уровень достижимой энергии и химическая неустойчивость хелатов. В результате эти лазеры не нашли применения. Советские ученые предложили использовать в лазерной среде неорганические активные жидкости. Лазеры на их основе отличаются высокими импульсными энергиями и обеспечивают показатели средней мощности. Жидкостные лазеры на такой активной среде способны генерировать излучение с узким спектром частот.

Еще один вид жидкостных лазеров - устройства, работающие на растворах органических красителей, отличающихся широкими спектральными линиями люминесценции. Такой лазер способен обеспечить непрерывную перестройку длин излучаемых волн света в широком диапазоне. При замене красителей обеспечивается перекрытие всего видимого спектра и части инфракрасного. Источником накачки в таких устройствах являются, как правило, твердотельные лазеры, но возможно использование газосветных ламп, обеспечивающих короткие вспышки белого света (менее 50 мксек).


2.3 Газовые лазеры


Существует много разновидностей. Одна из них - фотодиссоционный лазер. В нем применяется газ, молекулы которого под влиянием оптической накачки диссоциируют (распадаются) на две части, одна из которых оказывается в возбужденном состоянии и используется для лазерного излучения.

Большую группу газовых лазеров составляют газоразрядные лазеры, в которых активной средой является разреженный газ (давление 1-10 мм рт. ст.), а накачка осуществляется электрическим разрядом, который может быть тлеющим или дуговым и создается постоянным током или переменным током высокой частоты (10-50 МГц).

Существует несколько типов газоразрядных лазеров. В ионных лазерах излучение получается за счет переходов электронов между энергетическими уровнями ионов. Примером служит аргоновый лазер, в котором используется дуговой разряд постоянного тока.

Лазеры на атомных переходах генерируют за счет переходов электронов между энергетическими уровнями атомов. Эти лазеры дают излучение с длиной волны 0,4-100 мкм. Пример - гелий-неоновый лазер, работающий на смеси гелия и неона под давлением около 1 мм рт. ст. Для накачки служит тлеющий разряд, создаваемый постоянным напряжением примерно 1000 В.

К газоразрядным относятся также молекулярные лазеры, в которых излучение возникает от переходов электронов между энергетическими уровнями молекул. Эти лазеры имеют широкий диапазон частот, соответствующий длинам волн от 0,2 до 50 мкм.

Наиболее распространен из молекулярных лазер на диоксиде углерода (СО2-лазер). Он может давать мощность до 10 кВт и имеет довольно высокий КПД - около 40%. К основному углекислому газу обычно ещё добавляют примеси азота, гелия и других газов. Для накачки применяют тлеющий разряд постоянного тока или высокочастотный. Лазер на диоксиде углерода создает излучение с длиной волны около 10 мкм. Схематически он показан на рис. 1.


Рис. 1 - Принцип устройства СО2-лазера


Разновидность СО2-лазеров - газодинамические. В них инверсная населенность, необходимая для лазерного излучения, достигается за счет того, что газ, предварительно нагретый до 1500 К при давлении 20-30 атм, поступает в рабочую камеру, где он расширяется, а его температура и давление резко снижаются. Такие лазеры могут дать непрерывное излучение мощностью до 100 кВт.

К молекулярным относятся так называемые эксимерные лазеры, у которых рабочей средой является инертный газ (аргон, ксенон, криптон и др.), либо его соединение с хлором или фтором. В таких лазерах накачка осуществляется не электрическим разрядом, а потоком так называемых быстрых электронов (с энергией в сотни кэВ). Излучаемая волна получается наиболее короткой, например, у лазера на аргоне 0,126 мкм.

Большие мощности излучения можно получить, если повысить давление газа и применить накачку с помощью ионизирующего излучения в сочетании с внешним электрическим полем. Ионизирующим излучением служит поток быстрых электронов либо ультрафиолетовое излучение. Такие лазеры называются электроионизационными или лазерами на сжатом газе. Схематически лазеры такого типа показаны на рис. 2.


Рис. 2 - Электроионизационная накачка


Возбужденные молекулы газа за счет энергии химических реакций получаются в химических лазерах. Здесь используются смеси некоторых химически активных газов (фтор, хлор, водород, хлористый водород и др.). Химические реакции в таких лазерах должны протекать очень быстро. Для ускорения применяются специальные химические агенты, которые получаются при диссоциации молекул газа под действием оптического излучения, или электрического разряда, или электронного пучка. Примером химического лазера может служить лазер на смеси фтора, водорода и углекислого газа.

Особый тип лазера - плазменный лазер. В нем активной средой служит высокоионизированная плазма паров щелочноземельных металлов (магний, барий, стронций, кальций). Для ионизации применяют импульсы тока силой до 300 А при напряжении до 20 кВ. Длительность импульсов 0,1-1,0 мкс. Излучение такого лазера имеет длину волны 0,41-0,43 мкм, но может также быть в ультрафиолетовой области.


2.4 Полупроводниковые лазеры


Хотя полупроводниковые лазеры и являются твердотельными, их принято выделять в особую группу. В этих лазерах когерентное излучение получается вследствие перехода электронов с нижнего края зоны проводимости на верхний край валентной зоны. Существует два типа полупроводниковых лазеров. Первый имеет пластину беспримесного полупроводника, в котором накачка производится пучком быстрых электронов с энергией 50-100 кэВ. Возможна также оптическая накачка. В качестве полупроводников используются арсенид галлия GaAs, сульфид кадмия CdS или селенид кадмия CdSe. Накачка электронным пучком вызывает сильный нагрев полупроводника, отчего лазерное излучение ухудшается. Поэтому такие лазеры нуждаются в хорошем охлаждении. Например, лазер на арсениде галлия принято охлаждать до температуры 80 К.

Накачка электронным пучком может быть поперечной (рис. 3) или продольной (рис. 4). При поперечной накачке две противоположные грани полупроводникового кристалла отполированы и играют роль зеркал оптического резонатора. В случае продольной накачки применяются внешние зеркала. При продольной накачке значительно улучшается охлаждение полупроводника. Пример такого лазера - лазер на сульфиде кадмия, генерирующий излучение с длиной волны 0,49 мкм и имеющий КПД около 25%.


Рис. 3 - Поперечная накачка электронным пучком


Рис. 4 - Продольная накачка электронным пучком


Второй тип полупроводникового лазера - так называемый инжекционный лазер. В нем имеется p-n-переход (рис. 5), образованный двумя вырожденными примесными полупроводниками, у которых концентрация донорных и акцепторных примесей составляет 1018-1019см-3. Грани, перпендикулярные плоскости p-n-перехода, отполированы и служат в качестве зеркал оптического резонатора. На такой лазер подается прямое напряжение, под действием которого понижается потенциальный барьер в p-n-переходе и происходит инжекция электронов и дырок. В области перехода начинается интенсивная рекомбинация носителей заряда, при которой электроны переходят из зоны проводимости в валентную зону и возникает лазерное излучение. Для инжекционных лазеров применяют главным образом арсенид галлия. Излучение имеет длину волны 0,8-0,9 мкм, КПД довольно высок - 50-60%.


Рис. 5 - Принцип устройства инжекционного лазера

усилитель генератор луч волна

Миниатюрные инжекционные лазеры с линейными размерами полупроводников около 1 мм дают мощность излучения в непрерывном режиме до 10 мВт, а в импульсном режиме могут иметь мощность до 100 Вт. Получение больших мощностей требует сильного охлаждения.

Следует отметить, что в устройстве лазеров имеется много различных особенностей. Оптический резонатор лишь в простейшем случае составлен из двух плоскопараллельных зеркал. Применяются и более сложные конструкции резонаторов, с другой формой зеркал.

В состав многих лазеров входят дополнительные устройства для управления излучением, расположенные либо внутри резонатора, либо вне его. С помощью этих устройств отклоняется и фокусируется лазерный луч, изменяются различные параметры излучения. Длина волны у разных лазеров может составлять 0,1-100 мкм. При импульсном излучении длительность импульсов бывает в пределах от 10-3 до 10-12 с. Импульсы могут быть одиночными или следовать с частотой повторения до нескольких гигагерц. Достижимая мощность составляет 109 Вт для наносекундных импульсов и 1012 Вт для сверхкоротких пикосекундных импульсов.


2.5 Лазеры на красителях


Лазеры, использующие в качестве лазерного материала органические красители, обычно в форме жидкого раствора. Они принесли революцию в лазерную спектроскопию и стали родоначальником нового типа лазеров c длительностью импульса менее пикосекунды (Лазеры сверхкоротких импульсов).

В качестве накачки сегодня обычно применяют другой лазер, например Nd: YAG с диодной накачкой, или Аргоновый лазер. Очень редко можно встретить лазер на красителях с накачкой лампой-вспышкой. Основная особенность лазеров на красителях - очень большая ширина контура усиления. Ниже приведена таблица параметров некоторых лазеров на красителях.

Существует две возможности использовать такую большую рабочую область лазера:

перестройка длины волны на которой происходит генерация -> лазерная спектроскопия,

генерация сразу в широком диапазоне -> генерация сверх коротких импульсов.

В соответствии с этими двумя возможностями различаются и конструкции лазеров. Если для перестройки длины волны используется обычная схема, только добавляются дополнительные блоки для термостабилизации и выделения излучения со строго определённой длиной волны (обычно призма, дифракционная решётка, или более сложные схемы), то для генерации сверх коротких импульсов требуется уже гораздо более сложная установка. Изменяется конструкция кюветы с активной средой. Из-за того, что длительность импульса лазера в конечном итоге составляет 100÷30·10?15 (свет в вакууме успевает пройти лишь 30÷10мкм за это время), инверсия населённости должна быть максимальна, этого можно добиться только очень быстрой прокачкой раствора красителя. Для того чтобы это осуществить применяют специальную конструкцию кюветы со свободной струёй красителя (краситель прокачивается из специального сопла со скоростью порядка 10м/с). Наиболее короткие импульсы получаются при использовании кольцевого резонатора.

2.6 Лазер на свободных электронах


Вид лазера, излучение в котором генерируется моноэнергетическим пучком электронов, распространяющимся в ондуляторе - периодической системе отклоняющих (электрических или магнитных) полей. Электроны, совершая периодические колебания, излучают фотоны, энергия которых зависит от энергии электронов и параметров ондулятора.

В отличие от газовых, жидкостных или твердотельных лазеров, где электроны возбуждаются в связанных атомных или молекулярных состояниях - у FEL источником излучения является пучок электронов в вакууме, проходящий сквозь ряд расположенных специальным образом магнитов - ондулятор (вигглер), заставляющий пучок двигаться по синусоидальной траектории, теряя энергию, которая преобразуется в поток фотонов. В результате вырабатывается мягкое рентгеновское излучение, применяемое, например, для исследования кристаллов и других наноструктур.

Меняя энергию электронного пучка, а также параметры ондулятора (силу магнитного поля и расстояние между магнитами), можно в широких пределах менять частоту лазерного излучения, вырабатываемого FEL, что является главным отличием FEL от лазеров других систем. Излучение, получаемое с помощью FEL, применяется для изучения нанометровых структур - есть опыт получения изображений частиц размером всего 100 нанометров (этот результат был достигнут с помощью рентгеновской микроскопии с разрешением около 5 нм). Проект первого лазера на свободных электронах был опубликован в 1971 году Джоном М. Дж. Мэйди в рамках своего PhD-проекта в Стэнфордском университете. В 1976 году Мэйди и его коллеги продемонстрировали первые опыты с FEL, используя электроны с энергией 24 МэВ и 5-метровый вигглер для усиления излучения.

Мощность лазера составляла 300 мВт, а эффективность всего 0,01 %, но была показана работоспособность такого класса устройств, что привело к огромному интересу и резкому увеличению количества разработок в области FEL.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Когда ученые узнали, каковы свойства лазерного излучения, общественность получила широкие возможности интерферометрии. В настоящее время научное сообщество имеет достаточно точные методы определения количественных оценок перемещений, длин. Первое время интерферометры применялись довольно ограниченно, так как источники световой волны не были в необходимой степени когерентными, яркими, поэтому картина, доступная человеку, была корректной лишь в случае, когда измерительное плечо составляло 50 см и менее. Многое изменилось, когда появилась возможность применения более высокоточного лазерного излучения.

Гемостатика

Этим термином принято обозначать кратко свойство лазерного излучения, выраженное через запаивание, сварку. Обусловлен процесс некрозом, связанным с обработкой температурой. Коагуляционный контролируемый некроз, спровоцированный изменением уровня нагрева, сопровождается формированием краевой пленки из элементов клеток, тканей. Это соединяет между собой несколько слоев органа единым уровнем.

Работа с лазером - это всегда взаимодействие с очень высокими температурами. За счет такой особенности жидкость, находящаяся в норме внутри клеток и между тканями, практически мгновенно испаряется, а сухие компоненты сгорают. Дистрофия определяется тем, какой именно тип лазерного излучения (свойства немного отличаются) применен в конкретной установке. Многое также зависит и от вида обрабатываемых органических тканей, от продолжительности контакта. Если лазер перемещать, это провоцирует испарение, по итогам которого получается линейный разрез.

Важные качества

Рассматривая, какими свойствами обладает лазерное излучение, важно упомянуть монохроматический спектр, высокий уровень когерентности, низкую расходимость, повышенную плотность спектра. Суммарно это позволяет сконструировать на базе лазера высокоточные приборы, надежные и применимые в самых разных условиях климата, геологических, гидрологических факторов.

В последние годы конструируются высокоточные приборы с лазерами для геодезистов. Они основаны на уже известных человечеству свойствах лазерного излучения. Использование лазеров в подобных установках широко распространено не только в нашей стране, но и за границей. Как видно из практики, для укладчиков труб, машин землеройного класса лазерные системы незаменимы как метод определения направления движения. Важны они и при создании дорог (ж/д, авто), многих других работах.

Это важно

Применение лазер нашел себе при формировании траншей. При помощи специальной установки создается лазерный луч, определяющий трассу. Ориентируясь на него, управляющий экскаватором человек может стабильно трудиться. Эксплуатация подобных современных приборов - гарант качественного исполнения всех этапов работ и создания траншей точно такими, какие заданы проектной документацией.

Лазер незаменим!

Если в школьном или университетском курсе в тестовой работе обучающемуся дают задание «Назовите характерные для лазерного излучения свойства», первыми в голову приходят когерентность, яркость. Если сравнить лазер и плазму, первый превышает по параметрам яркости в разы, применим для создания серийных вспышек, причем частота может достигать 1010 Гц. Один импульс может длиться (в пикосекундах) несколько десятков. При этом расходимость низкая, можно регулировать частоту. Указанные качества оказались применимы в установках, позволяющих изучать протекающие с очень высокой скоростью процессы.

В силу описанных особенностей лазеры стали незаменимыми в аналитике с применением технологии термооптической спектроскопии.

Тонкие структуры

Выявленные учеными (перечисленные выше) основные свойства лазерного излучения позволили применять эту технологию при разработке современного оружия и конструировании машин для нарезки различных материалов. Но только лишь этим спектр возможностей не ограничен. Применяя особенно точные и технологичные методы построения рабочей конструкции, на базе лазерного излучения можно создать систему изучения молекул, их структуры, свойств. Получая новейшую информацию таким образом, ученые формируют фундамент для создания новых типов лазеров. Как видно из наиболее оптимистичных прогнозов, уже в ближайшем будущем именно посредством лазерного излучения удастся раскрыть природу фотосинтеза, а значит, научные сотрудники получат все ключи к познанию сути жизни на планете и механизмов ее формирования.

Познание мира: тайны и открытия

Считается, что все основные свойства лазерного излучения в настоящее время уже исследованы. Ученые знают базовые принципы стимулированного излучения и сумели применить их на практике. Особенно важными считаются монохроматический спектр излучения, его интенсивность, импульсная длина, четкое направление. За счет таких особенностей луч лазера вступает в нетипичное взаимодействие с веществом.

Как дополнительно обращают внимание физики, указанные свойства лазерного излучения нельзя назвать независимыми характеристиками, описывающими все без исключения разновидности упомянутого явления. Между ними есть определенные связи. В частности, когерентность определяется направленностью излучения, а импульсная длина напрямую связана с монохроматическим спектром луча. Длительность, направление определяют интенсивность излучения.

Эффект Рамана

Это явление - одно из важных для оценки и понимания, применения свойств лазерного излучения. Термином принято обозначать такое состояние, для инициации которого необходима установка большой мощности. Под ее влиянием происходит рассеивание, когда наблюдается частотное смещение излучения. При выявлении специфики спектрального состава, оценке мощности можно заметить, что частотность корректируется в соответствии с довольно сложной закономерностью. Если стимулировать эффект Рамана искусственным путем, можно создать метод корректирования для оптики когерентных сигналов.

Это любопытно

Как показали исследования свойств лазерного излучения и процессов, которые оно инициирует в веществе, картина во многом сходна с наблюдаемой в структуре ферромагнетиков, сверхпроводников. Если добиться повышенного уровня накачки, используя резонатор низкой степени, лучи, испускаемые лазером, становятся хаотичными. При этом сам хаос - это такое световое состояние, которое совершенно не похоже на хаос, создаваемый излучающими тепло объектами.

Область использования расширяется

Так как лазерное излучение обладает следующими свойствами: монохроматический спектр, строго определенная направленность, следовательно, его можно применять в качестве светового источника. В настоящее время активно ведутся разработки в сфере эксплуатации этой технологии для передачи сигналов. Известно, что свет и вещество могут взаимодействовать таким образом, что процесс применим на практике в различных установках, но корректные подходы еще только предстоит разработать. Есть и иные, высокотехнологичные, сложные, наукоемкие актуальные задачи, для решения которых рано или поздно удастся применить высокомощное лазерное излучение.

Свойства описываемого явления позволяют конструировать спектральные приборы. Это в некоторой степени объясняется и низкой расходимостью луча, сопровождающейся повышенной плотностью спектра.

Возможностей много

Как удалось выяснить ученым, для создания максимально эффективных и широко применяемых установок разумно применять такие лазеры, для которых частоту можно настраивать в процессе работы. Они актуальны в первую очередь для спектральных приборов с повышенными показателями разрешения. В таких установках можно добиться корректного результата исследования, не прибегая к диспергирующему элементу.

Системы, основанные на лазере, частота которого корректируется во время работы, в настоящее время нашли себе применение в разных областях и сферах научной деятельности, медицины, промышленности. Во многом предназначение конкретного прибора определяется спецификой лазерного излучения, реализованного в нем. Линия генерации определяет спектральное разрешение, полуширину функциональности аппарата. Форма зависит от заданного интенсивного спектрального распределения.

Технические особенности

Обычно лазер конструируется как резонатор, где создается специфическая среда. Ее ключевая особенность - негативное по знаку поглощение электромагнитной энергии. Такой резонатор позволяет уменьшить потери радиации в специализированной среде. Обусловлено это созданием цикла для электромагнитной энергии. При этом частоты берутся лишь узкой полосы. Такой подход позволяет восполнять энергетические потери, спровоцированные тем фактом, что излучение вынужденное.

Чтобы генерировать электромагнитную энергию, имеющую характерные особенности лазера, не нужно использовать резонатор. Результат все равно будет когерентным, отличающимся высокой коллимацией и узким спектром.

О голографии

Чтобы реализовать подобные процессы, следует иметь в своем распоряжении источник, генерирующий излучение с высоким уровнем когерентности. В настоящее время это именно лазеры. Как только удалось впервые открыть такое излучение, практически сразу физики поняли, что свойства его можно применять для реализации голографии. Это стало толчком для широкого практического применения перспективной технологии.

О применении

Едва только лазеры были изобретены, как научное сообщество, а следом и весь мир, оценили их как уникальное решение любой проблемы. Это обусловлено свойствами излучения. В настоящее время лазеры эксплуатируются в технике, науке, при решении многочисленных бытовых задач: от воспроизведения музыки до считывания кодов при продаже товара. Промышленность применяет такие системы для спайки, нарезки, сварки. Благодаря возможности достижения очень высокой температуры можно сваривать такие материалы, которые не поддаются классическим методикам соединения. Это сделало возможным, к примеру, создавать цельные объекты из керамических, металлических частей.

Лазерный луч при использовании современной технологии можно сфокусировать так, что диаметр полученной точки будет оцениваться в микрон. Это позволяет применять технологию в микроскопических электронных приборах. В настоящее время такая возможность известна под термином «скрайбирование».

А где еще?

Довольно активно лазеры, благодаря своим уникальным качествам, используются в промышленности для создания покрытий. Это помогает повысить стойкость к износу разнообразных изделий, материалов. Не менее актуальна и лазерная маркировка, гравировка - при помощи современной установки таким образом можно обработать практически любую поверхность. Во многом это связано с отсутствием механического прямого влияния, то есть рабочий процесс провоцирует меньшие деформации, нежели при любом другом распространенном методе. Современный уровень развития техники и науки таков, что можно полностью автоматизировать все этапы работы с лазером, сохраняя при этом высокий производительный уровень и повышенную точность исполнения задач.

Технологии и техника

В последнее время довольно широко применяются лазерные установки с красителями. Они производят монохроматическое излучение с разными длинами волн, импульсы оцениваются в 10-16 с. Мощность таких установок очень большая, а генерируемые импульсы оцениваются как гигантские. Такая возможность особенно значима для спектроскопии и исследований в оптике относительно не обладающих линейностью эффектов.

Применение лазера стало базовой технологией для точной оценки расстояния между нашей планетой и ближайшим небесным телом - Луной. Точность измерения - до сантиметров. Локация с применением лазера позволяет увеличивать астрономические знания, уточнять навигацию в космосе, увеличивать базу данных об особенностях атмосферы и о том, из чего состоят планеты нашей системы.

Химия не осталась в стороне

Современные лазерные технологии используются для инициации химических реакций и исследования того, как они протекают. При применении подобных возможностей можно выявить предельно точно локализацию, дозу, стерильность, обеспечить необходимые энергетические показатели на моменте старта системы.

Ученые активно работают над формированием систем лазерного охлаждения и разрабатывают возможности применения такого излучения для контроля термоядерных реакций.

Введение…………………………………………………………………3

    Основные даты……………………………………………………...5

    Получение лазерного луча………………………………………..7

    Лазерная технология……………………………………………….10

    Принцип действия лазеров……………………………………….11

    Основные свойства лазерного луча……………………………..12

    Применение лазеров………………………………………………..16

    Характеристики некоторых типов лазеров…………………….23

Заключение………………………………………………………………31

Список использованной литературы………………………………..33

Введение.

Одним из самых замечательных достижений физики второй половины двадцатого века было открытие физических явлений, послуживших основой для создания удивительного прибора - оптического квантового генератора, или лазера. Габариты лазеров разнятся от микроскопических для ряда полупроводниковых лазеров до размеров футбольного поля для некоторых лазеров на неодимовом стекле. Уникальные свойства излучения лазеров позволили использовать их в различных отраслях науки и техники, а также в быту, начиная с чтения и записи компакт-дисков и заканчивая исследованиями в области управляемого термоядерного синтеза.

Так, что же такое лазер? Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания, означающего ”усиление света в результате вынужденного излучения”. Оптический квантовый генератор - устройство, преобразующее энергию накачки (световую, электрическую, тепловую, химическую и др.) в энергию когерентного, монохроматического, поляризованного и узконаправленного потока излучения.

Чтобы создать лазер или оптический квантовый генератор – источник когерентного света необходимо:

1) рабочее вещество с инверсной населенностью. Только тогда можно получить усиление света за счет вынужденных переходов.

2) рабочее вещество следует поместить между зеркалами, которые осуществляют обратную связь.

3) усиление, даваемое рабочим веществом, а значит, число возбужденных атомов или молекул в рабочем веществе должно быть больше порогового значения, зависящего от коэффициента отражения полупрозрачного зеркала.

Физической основой работы лазера служит квантовомеханическое явление вынужденного индуцированного излучения. Оно происходит при взаимодействии фотона с возбужденным атомом при точном совпадении энергии фотона с энергией возбуждения атома (или молекулы). Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим экстремально больших пиковых мощностей.

В результате этого взаимодействия атом переходит в невозбужденное состояние, а избыток энергии излучается в виде нового фотона с точно такой же энергией, направлением распространения и поляризацией, как и у первичного фотона. Таким образом, следствием данного процесса является наличие уже двух абсолютно идентичных фотонов. При дальнейшем взаимодействии этих фотонов с возбужденными атомами, аналогичными первому атому, может возникнуть цепная реакция размножения одинаковых фотонов, летящих абсолютно точно в одном направлении, что приведет к появлению узконаправленного светового луча. Для возникновения лавины идентичных фотонов необходима среда, в которой возбужденных атомов было бы больше, чем невозбужденных, поскольку при взаимодействии фотонов с невозбужденными атомами происходило бы поглощение фотонов. Такая среда называется средой с инверсной населенностью уровней энергии.

Итак, кроме вынужденного испускания фотонов возбужденными атомами происходят также процесс самопроизвольного, спонтанного испускания фотонов при переходе возбужденными атомами в невозбужденное состояние и процесс поглощения фотонов при переходе атомов из невозбужденного состояния в возбужденное. Эти три процесса, сопровождающие переходы атомов в возбужденные состояния и обратно, были постулированы А. Эйнштейном в 1916 г.

    Основные даты.

1916 год : А. Эйнштейн предсказывает существование явления вынужденного излучения - физической основы работы любого лазера. Если число возбужденных атомов велико и существует инверсная выделенность уровней (в верхнем, возбужденном состоянии атомов больше, чем в нижнем, невозбужденном), то первый же фотон, родившийся в результате спонтанного излучения, вызовет всенарастающую лавину появления идентичных фотонов. Произойдет усиление спонтанного излучения.

1927-1930гг: Строгое теоретическое обоснование в рамках квантовой механики это явление получило в работах П. Дирака

1928 год : экспериментальное подтверждение Р. Ладенбургом и Г. Копферманном существования вынужденного излучения.

1940 год: советский физиком В. Фабрикантом и Ф. Бутаевой была предсказана возможность использования вынужденного излучения среды с инверсией населённостей для усиления электромагнитного излучения, с предложением создавать инверсную населенность в электрическом разряде в газе.

1950 год : А. Кастлер (Нобелевская премия по физике 1966 года) предлагает метод оптической накачки среды для создания в ней инверсной населённости.

1952год: метод реализован на практике Бросселем, Кастлером и Винтером. До создания квантового генератора оставался один шаг: ввести в среду положительную обратную связь, то есть поместить эту среду в резонатор.

1954 год : первый микроволновой генератор - мазер на аммиаке (Ч. Таунс - Нобелевская премия по физике 1964 года, Дж. Гордон, Г. Цайгер). Роль обратной связи играл объёмный резонатор, размеры которого были порядка 12,6 мм (длина волны, излучаемой при переходе аммиака с возбуждённого колебательного уровня на основной). Весомый вклад в изучение принципов квантового усиления и генерации внесли также советские физики А. Прохоров и Н. Басов (Нобелевская премия по физике 1964 г.). Для усиления электромагнитного излучения оптического диапазона необходимо было создать объёмный резонатор, размеры которого были бы порядка микрона. Из-за связанных с этим технологических трудностей многие учёные в то время считали, что создать генератор видимого излучения невозможно.

1960 год : Т. Мейман продемонстрировал работу первого оптического квантового генератора - лазера. В качестве активной среды использовался рубин (оксид алюминия Al 2 O 3 с небольшой примесью хрома Cr), а вместо объёмного резонатора был использован открытый оптический резонатор. Этот лазер работал в импульсном режиме, на длине волны в 694,3 нм. В декабре того же года был создан гелий-неоновый лазер, излучающий в непрерывном режиме (А. Джаван, У. Беннет, Д. Хэрриот). Изначально лазер работал в инфракрасном диапазоне, затем был модифицирован для излучения видимого красного света.

В последующие два года гелий-неоновый лазер был усовершенствован, а также были открыты другие газовые лазеры, работающие в инфракрасной области, включая лазеры с использованием других благородных газов и атомарного кислорода. Однако наибольший интерес к газовым лазерам был вызван открытием генерации гелий-неонового лазера на красной линии 6328 А при условиях, лишь незначительно отличавшихся от условий, при которых была получена генерация в первом газовом лазере. Получение генерации в видимой области спектра стимулировало интерес не только к поискам дополнительным переходов такого типа, но и к лазерным применениям, так как при этом были открыты многие новые и неожиданные явления, а лазерный луч получил новые применения в качестве лабораторного инструмента.

Два года , последовавшие за открытием генерации на линии 6328 А, были насыщены большим количеством технических усовершенствований, направленных главным образом на достижение большей мощности и большей компактности этого типа лазера. Тем временем продолжались поиски новых длин волн и были открыты многие инфракрасные и несколько новых переходов в видимой области спектра. Наиболее важным из них является открытие Матиасом импульсных лазерных переходов в молекулярном азоте и в окиси углерода.

Физика лазеров и по сей день интенсивно развивается. С момента изобретения лазера почти каждый год появлялись всё новые его виды, приспособленные для различных целей.

В 1961 г . был создан лазер на неодимовом стекле, а в течение следующих пяти лет были разработаны лазерные диоды, лазеры на красителях, лазеры на двуокиси углерода, химические лазеры.

В 1963 г . Ж. Алфёров и Г. Кремер (Нобелевская премия по физике 2000 г.) разработали теорию полупроводниковых гетероструктур, на основе которых были созданы многие лазеры.

Следующим наиболее важным этапом в развитии лазеров было открытие Беллом в конце 1963 г. лазера, работающего на ионах ртути. Хотя лазер на ионах ртути сам по себе не оправдал первоначальных надежд на получение больших мощностей в непрерывном режиме в красной и зеленой областях спектра, это открытие указало новые режимы разряда, при которых могут быть обнаружены лазерные переходы в видимой области спектра. Поиски таких переходов были проведены также среди других ионов. Вскоре было обнаружено, что ионы аргона представляют собой наилучший источник лазерных переходов с большой мощностью в видимой области и что на них может быть получена генерация в непрерывном режиме. В результате дальнейших усовершенствований аргонового лазера в непрерывном режиме была получена наиболее высокая мощность, какая только возможна в видимой области. В результате поисков была открыта генерация на 200 ионных переходах, сосредоточенных главным образом в видимой, а также в ультрафиолетовой частях спектра.

2.Получение лазерного луча.

При одновременном рождении большого числа спонтанно испущенных фотонов возникнет большое число лавин, каждая из которых будет распространяться в своем направлении, заданном первоначальным фотоном соответствующей лавины. В результате мы получим потоки квантов света, но не сможем получить ни направленного луча, ни высокой монохроматичности, так как каждая лавина инициировалась собственным первоначальным фотоном. Для того чтобы среду с инверсной населенностью можно было использовать для генерации лазерного луча, т. е. направленного луча с высокой монохроматичностью, необходимо снимать инверсную населенность с помощью первичных фотонов, уже обладающих одной и той же энергией, совпадающей с энергией данного перехода в атоме. В этом случае мы будем иметь лазерный усилитель света.

Существует, однако, и другой вариант получения лазерного луча, связанный с использованием системы обратной связи. Спонтанно родившиеся фотоны, направление распространения которых не перпендикулярно плоскости зеркал, создадут лавины фотонов, выходящие за пределы среды. В то же время фотоны, направление распространения которых перпендикулярно плоскости зеркал, создадут лавины, многократно усиливающиеся в среде вследствие многократного отражения от зеркал. Если одно из зеркал будет обладать небольшим пропусканием, то через него будет выходить направленный поток фотонов перпендикулярно плоскости зеркал. При правильно подобранном пропускании зеркал, точной их настройке относительно друг друга и относительно продольной оси среды с инверсной населенностью обратная связь может оказаться настолько эффективной, что излучением можно будет полностью пренебречь по сравнению с излучением, выходящим через зеркала. На практике это, действительно, удается сделать. Такую схему обратной связи называют оптическим резонатором, и именно этот тип резонатора используют в большинстве существующих лазеров.

При спонтанном излучении атом излучает спектральную линию конечной ширины. При лавинообразном нарастании числа вынужденно испущенных фотонов в среде с инверсной населенностью интенсивность излучения этой лавины будет возрастать прежде всего в центре спектральной линии данного атомного перехода, и в результате этого процесса ширина спектральной линии первоначального спонтанного излучения будет уменьшаться. На практике в специальных условиях удается сделать относительную ширину спектральной линии лазерного излучения в 10000000-100000000 раз меньше, чем ширина самых узких линий спонтанного излучения, наблюдаемых в природе. Кроме сужения линии излучения в лазере удается получить расходимость луча менее 0,00001 радиана, т. е. на уровне угловых секунд.

Известно, что направленный узкий луч света можно получить в принципе от любого источника, поставив на пути светового потока ряд экранов с маленькими отверстиями, расположенными на одной прямой. Представим себе, что мы взяли нагретое черное тело и с помощью диафрагм получили луч света, из которого посредством призмы или другого спектрального прибора выделили луч с шириной спектра, соответствующей ширине спектра лазерного излучения. Зная мощность лазерного излучения, ширину его спектра и угловую расходимость луча, можно с помощью формулы Планка вычислить температуру воображаемого черного тела, использованного в качестве источника светового луча, эквивалентного лазерному лучу. Этот расчет приведет нас к фантастической цифре: температура черного тела должна быть порядка десятков миллионов градусов! Удивительное свойство лазерного луча - его высокая эффективная температура (даже при относительно малой средней мощности лазерного излучения или малой энергии лазерного импульса) открывает перед исследователями большие возможности, абсолютно неосуществимые без использования лазера.

Лазеры различаются способом создания в среде инверсной населенности, или, иначе говоря, способом накачки (оптическая накачка, возбуждение электронным ударом, химическая накачка и т. п.); рабочей средой (газы, жидкости, стекла, кристаллы, полупроводники и т. д.); конструкцией резонатора; режимом работы (импульсный, непрерывный). Эти различия определяются многообразием требований к характеристикам лазера в связи с его практическими применениями. Генерация в лазере достигается за счет индуцированного излучения на некотором переходе между уровнями квантовой системы. В отсутствие внешнего поля спонтанное излучение и безизлучательные релаксационные процессы определяют время жизни частицы в возбужденном состоянии. Из-за конечности этого времени (и из-за других причин, например доплеровского смещения частоты для движущихся микрочастиц) линия излучения, соответствующая переходу, оказывается уширенной.
Заселение уровней в лазерах может осуществляться:

За счет поглощения света (оптическая накачка). Подбирая источник света с соответствующим спектром, можно обеспечить высокую селективность накачки. Наиболее успешно этот вид накачки используется в твердотельных (на кристаллах и стеклах) лазерах и в лазерах на красителях.

В неупругих столкновениях атомов и молекул со свободными электронами, при которых часть энергии электрона идет на возбуждение атома или молекулы. Свободные электроны могут создаваться или в газовом разряде, или вводиться в газ в виде пучка, сформированного в ускорителе.

За счет неупругих столкновений атомов рабочего вещества с возбужденными атомами или ионами вспомогательного газа с передачей энергии возбуждения от них рабочему веществу. В некоторых типах столкновений передача энергии носит резонансный характер и достигается высокая степень селективности заселения уровней.
- в процессе специально подобранных химических реакций (химическая накачка); при этом возбуждаются колебательные уровни молекул, причем возбуждение может быть селективным.
- за счет нагрева (тепловая накачка). Этот метод используется для накачки колебательных уровней в молекулах, инверсия на переходах между которыми осуществляется за счет различных времен релаксации для верхнего и нижнего лазерных уровней при быстром адиабатическом расширении газа. На этом принципе основана работа газодинамических лазеров.
Очистка возбужденных состояний осуществляется: спонтанным излучением; в столкновениях с электронами или атомами примесного газа, при которых энергия возбуждения передается от рабочего вещества электронам или атомам примеси; при адиабатическом расширении газа; в специально подобранных химических реакциях.
Таким образом, среда с инверсией населенности способна усиливать световую волну. Чтобы превратить усилитель в генератор, необходимо организовать обратную связь. В лазерах она достигается при помещении активного вещества между отражающими поверхностями (зеркалами), образующими так называемый "открытый резонатор" за счет того, что часть излученной активным веществом энергии отражается от зеркал и опять возвращается в активное вещество. Следует отметить, что система из двух параллельных зеркал обладает резонансными свойствами - резонирует только на определенных частотах - и выполняет в лазере еще и ту роль, которую в обычных низкочастотных генераторах играет колебательный контур.

Однако резонатор в лазере не только обеспечивает обратную связь за счет возврата отраженного от зеркал излучения в активное вещество, но и определяет спектр излучения лазера, его энергетические характеристики, направленность излучения.
Лазер не обязательно генерирует на одной частоте, чаще наоборот, генерация происходит одновременно на нескольких типах колебаний. Для того чтобы лазер работал на одной частоте (в одночастотном режиме), необходимо, как правило, принимать специальные меры (например, увеличить потери) или изменить расстояние между зеркалами так, чтобы и в контур усиления попадала только одна мода. Итак, если коэффициент усиления в рабочем веществе перекрывает потери в резонаторе для определенных типов колебаний, на них возникает генерация. Затравкой для ее возникновения являются, как и в любом генераторе, шумы, представляющие в лазерах спонтанное излучение.

    Лазерная технология.

Лазерные технологические процессы можно условно разделить на два вида. Первый из них использует возможность чрезвычайно тонкой фокусировки лазерного луча и точного дозирования энергии как в импульсном, так и в непрерывном режиме. В таких технологических процессах применяют лазеры сравнительно невысокой средней мощности - это газовые лазеры импульсно-периодического действия, лазеры на кристаллах иттрий алюминиевого граната с примесью неодима. С помощью последних были разработаны технология сверления тонких отверстий (диаметром 1 - 10 мкм и глубиной до 10 - 100 мкм) в рубиновых и алмазных камнях для часовой промышленности и технология изготовления фильеров для протяжки тонкой проволоки. Основная область применения маломощных импульсных лазеров связана с резкой и сваркой миниатюрных деталей в микроэлектронике и электровакуумной промышленности, с маркировкой миниатюрных деталей, автоматическим выжиганием цифр, букв, изображений для нужд полиграфической промышленности.

В последние годы в одной из важнейших областей микроэлектроники, фотолитографии, без применения которой практически невозможно изготовление сверхминиатюрных печатных плат, интегральных схем и других элементов микроэлектронной техники, обычные источники света заменяются на лазерные. С помощью лазера на XeCL (1=308 нм) удается получить разрешение в фотолитографической технике до 0,15 - 0,2 мкм.

Дальнейший прогресс в субмикронной литографии связан с применением в качестве экспонирующего источника света мягкого рентгеновского излучения из плазмы, создаваемой лазерным лучом. В этом случае предел разрешения, определяемый длиной волны рентгеновского излучения (1= 0,01 - 0,001 мкм), оказывается просто фантастическим.

Второй вид лазерной технологии основан на применении лазеров с большой средней мощностью: от 1кВт и выше. Мощные лазеры используют в таких энергоемких технологических процессах, как резка и сварка толстых стальных листов, поверхностная закалка, наплавление и легирование крупногабаритных деталей, очистка зданий от поверхностей загрязнений, резка мрамора, гранита, раскрой тканей, кожи и других материалов. При лазерной сварке металлов достигается высокое качество шва и не требуется применение вакуумных камер, как при электроннолучевой сварке, а это очень важно в конвейерном производстве.

Мощная лазерная технология нашла применение в машиностроении, автомобильной промышленности, промышленности строительных материалов. Она позволяет не только повысить качество обработки материалов, но и улучшить технико-экономические показатели производственных процессов. Так, скорость лазерной сварки стальных листов толщиной 14 мКм достигает 100м/ч при расходе электроэнергии 10 кВт/ч

    Принцип действия лазеров.

Лазерное излучение - есть свечение объектов при нормальных температурах. Но в обычных условиях большинство атомов находятся в низшем энергетическом состоянии. Поэтому при низких температурах вещества не светятся.

При прохождении электромагнитной волны сквозь вещество её энергия поглощается. За счёт поглощенной энергии волны часть атомов возбуждается, то есть переходит в высшее энергетическое состояние. При этом от светового пучка отнимается некоторая энергия:

где hv - величина, соответствующая количеству потраченной энергии,

E2 - энергия высшего энергетического уровня,

E1 - энергия низшего энергетического уровня.

Теперь представим, что каким-либо способом мы возбудили большую часть атомов среды. Тогда при прохождении через вещество электромагнитной волны с частотой,

где v - частота волны,

Е2 - Е1 - разница энергий высшего и низшего уровней,

h - длина волны.

эта волна будет не ослабляться, а напротив, усиливаться за счёт индуцированного излучения. Под её воздействием атомы согласованно переходят в низшие энергетические состояния, излучая волны, совпадающие по частоте и фазе с падающей волной.

    Основные свойства лазерного луча .

Лазеры являются уникальными источниками света. Их уникальность определяют свойства, которыми не обладают обычные источники света. В противоположность, например, обычной электрической лампочке, электромагнитные волны, зарождающиеся в различных частях оптического квантового генератора, удаленных друг от друга на макроскопические расстояния, оказываются когерентны между собой. Это значит, что все колебания в различных частях лазера происходят согласованно.

Чтобы разобрать понятие когерентности в деталях, нужно вспомнить понятие интерференции. Интерференция - это взаимодействие волн, при котором происходит сложение амплитуд этих волн. Если удается запечатлеть процесс этого взаимодействия, то можно увидеть так называемую интерференционную картину (она выглядит как чередование темных и светлых участков).

Интерференционную картину осуществить довольно трудно, так как обычно источники исследуемых волн порождают волны несогласованно, и сами волны при этом будут гасить друг друга. В этом случае интерференционная картина будет чрезвычайно размыта или же не будет видна вовсе. Следовательно, решение проблемы получения интерференционной картины лежит в использовании двух зависимых и согласованных источников волн. Волны от согласованных источников излучают таким образом, что разность хода волн будет равна целому числу длин волн. Если это условие выполняется, то амплитуды волн накладываются друг на друга и происходит интерференция волн. Тогда источники волн можно назвать когерентными.

Когерентность волн, и источников этих волн можно определить математически. Пусть Е1 - напряженность электрического поля, создаваемая первым пучком света, Е2 - вторым. Допустим, что пучки пересекаются в некоторой точке пространства А. Тогда согласно принципу суперпозиции напряженность поля в точке А равна:

Так как в явлениях интерференции и дифракции оперируют относительными значениям величин, то дальнейшие операции будем производить с величиной - интенсивность света, которая обозначена за I и равна

Меняя величину I на определенную ранее величину Е, получаем

I = I1 + I2 + I12,

где I1 - интенсивность света первого пучка,

I2 - интенсивность света второго пучка.

Последнее слагаемое I12 учитывает взаимодействие пучков света и называется интерференционным членом. Это слагаемое равно:

I12 = 2 (E1 * E2).

Если взять независимые источники света, например, две электрические лампочки, то повседневный опыт показывает, что I = I1 + I2, то есть результирующая интенсивность равна сумме интенсивностей налагающихся пучков, а потому интерференционный член обращается в ноль. Тогда говорят, что пучки некогерентны между собой, следовательно некогерентны и источники света. Однако, если накладывающиеся пучки зависимы, то интерференционный член не обращается в ноль, а потому I ¹ I1 + I2. В этом случае в одних точках пространства результирующая интенсивность I больше, в других - меньше интенсивностей I1 и I2. Тогда и происходит интерференция волн, а значит источники света оказываются когерентными между собой.

С понятием когерентности также связано понятие пространственной когерентности. Два источника электромагнитных волн, размеры и взаимное расположение которых позволяет получить интерференционную картину, называются пространственно когерентными.

Другой замечательной чертой лазеров, тесно связанной с когерентностью их излучения, является способность к концентрации энергии - концентрации во времени, в спектре, в пространстве, по направлению распространения. Первое означает то, что излучение оптического генератора может длиться всего около сотни микросекунд. Концентрация в спектре предполагает, что ширина спектральной линии лазера очень узка. Это монохроматичность.

Лазеры также способны создавать пучки света с очень малым углом расхождения. Как правило, это значение достигает 10-5 рад. Это значит, что на Луне такой пучок, посланный с Земли, даст пятно диаметром около 3 км. Это является проявлением концентрации энергии лазерного луча в пространстве и по направлению распространения.

Для некоторых квантовых генераторов характерна чрезвычайно высокая степень монохроматичности их излучения. Любой поток электромагнитных волн всегда обладает набором частот. Излучение и поглощение атомной системы характеризуется не только частотой, но и некоторой неопределенностью этой величины, называемой шириной спектральной линии (или полосы). Абсолютно монохроматического одноцветного потока создать нельзя, однако, набор частот лазерного излучения чрезвычайно узок, что и определяет его очень высокую монохроматичность.

Нужно отметить, что линии лазерного излучения имеют сложную структуру и состоят из большого числа чрезвычайно узких линий. Применяя соответствующие оптические резонаторы, можно выделить и стабилизировать отдельные линии этой структуры, создав тем самым одночастотный лазер.

Мощность лазера . Лазеры являются самыми мощными источниками светового излучения. В узком интервале спектра кратковременно (в течение промежутка времени, продолжительностью порядка 10-13 с.) у некоторых типов лазеров достигается мощность излучения порядка 1017 Вт/см2, в то время как мощность излучения Солнца равна только 7*103 Вт/см2, причём суммарно по всему спектру. На узкий же интервал l=10-6 см (это ширина спектральной линии лазера) приходится у Солнца всего лишь 0,2 Вт/см2. Если задача заключается в преодолении порога в 1017 Вт/см2, то прибегают к различным методам повышения мощности.

Для повышения мощности излучения необходимо увеличить число атомов, участвующих в усилении светового потока за счет индуцированного излучения, и уменьшить длительность импульса.

Метод модулированной добротности . Чтобы увеличить число атомов, участвующих почти одновременно в усилении светового потока, необходимо задержать начало генерации, чтобы накопить как можно больше возбужденных атомов, создающих инверсную заселенность, для чего надо поднять порог генерации лазера и уменьшить добротность. Порогом генерации называют предельное число атомов, способных находиться в возбужденном состоянии. Это можно сделать посредством увеличения потерь светового потока. Например, можно нарушить параллельность зеркал, что резко уменьшит добротность системы. Если при такой ситуации начать накачку, то даже при значительной инверсии заселенности уровней генерация не начинается, поскольку порог генерации высок. Поворот зеркала до параллельного другому зеркалу положения повышает добротность системы и тем самым понижает порог генерации. Когда добротность системы обеспечит начало генерации, инверсная заселенность уровней будет весьма значительной. Поэтому мощность излучения лазера сильно увеличивается. Такой способ управления генерацией лазера называется методом модулированной добротности.

Продолжительность импульса излучения зависит от того, в течение какого времени вследствие излучения инверсная заселенность изменится настолько, что система выйдет из условия генерации. Продолжительность зависит от многих факторов, но обычно составляет 10-7 -10-8 с. Очень распространено модулирование добротности с помощью вращающейся призмы. При определенном положении она обеспечивает полное отражение падающего вдоль оси резонатора луча в обратном направлении. Частота вращения призмы составляет десятки или сотни герц. Импульсы лазерного излучения имеют такую же частоту.

Более частое повторение импульсов может быть достигнуто модуляцией добротности с помощью ячейки Керра (быстродействующий модулятор света). Ячейку Керра и поляризатор помещают в резонатор. Поляризатор обеспечивает генерацию лишь излучения определенной поляризации, а ячейка Керра ориентирована так, чтобы при наложении на нее напряжения не проходил свет с этой поляризацией. При накачке лазера напряжение с ячейки Керра снимается в такой момент времени, чтобы начавшаяся при этом генерация была наиболее сильной. Для лучшего понимания этого метода можно провести аналогию с известным из школьного курса физики опытом с турмалином.

Имеются также и другие способы введения потерь, приводящие к соответствующим методам модуляции добротности.

Применительно к лазерным технологиям используется термин гигантский импульс. Таковым называют импульс, обладающей очень большой энергией при сверхмалой длительности.

Сама по себе идея создания гигантского импульса проста при использовании оптического затвора - специального устройства, которое по сигналу может переходить из открытого состояния в закрытое и наоборот. В открытом состоянии затвор пропускает через себя лазерное излучение, в закрытом - поглощает или отклоняет его в другую сторону. При создании гигантского импульса затвор переводят в закрытое состояние еще до того, как начнется высвечивание энергии накачки. Затем, по мере поглощения энергии активные центры (атомы, участвующие в генерации) переходят в массовом порядке на долгоживущий верхний уровень. Генерация в лазере пока не осуществляется, ведь затвор закрыт. В результате на рассматриваемом уровне накапливается чрезвычайно большое число активных центров - создается очень сильная инверсная заселенность уровней. В определенный момент затвор переключают в открытое состояние. В некотором отношении это похоже на то, если бы высокая плотина, создававшая огромный перепад уровней воды, вдруг неожиданно исчезла. Происходит быстрое и очень бурное высвечивание активных центров, в результате чего и рождается короткий и мощный лазерный импульс - гигантский импульс. Его длительность составляет 10-8 с., а максимальная мощность 108 Вт.

    Применение лазеров .

Прежде всего следует отметить, что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер.

Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой мощностью, может обратимо изменять физические характеристики вещества, что приводит к различным нелинейно-оптическим явлениям.

Лазер дает возможность осуществлять сильную концентрацию световой мощности в пределах весьма узких частотных интервалов: при этом возможна также плавная перестройка частоты. Поэтому лазеры широко применяются для получения и исследования оптических спектров веществ. Лазерная спектроскопия отличается исключительно высокой степенью точности (высоким разрешением). Лазеры позволяют также осуществлять избирательное возбуждение тех или иных состояний атомов и молекул, избирательный разрыв определенных химических связей. В результате оказывается возможным инициирование конкретных химических реакций, управление развитием этих реакций, исследование их кинетики.

Пикосекундные лазерные импульсы дали начало исследованиям целого ряда быстропротекающих процессов в веществе и, в частности, в биологических структурах. Отметим, например, фундаментальные исследования процессов фотосинтеза. Эти процессы весьма сложны и, к тому же, протекают крайне быстро - в пикосекундной временной шкале. Использование сверхкоротких световых импульсов дает уникальную возможность проследить за развитием подобных процессов и даже моделировать отдельные их звенья.

Роль лазеров в фундаментальных научных исследованиях исключительно велика. Более подробная беседа на эту тему потребовала бы, однако, рассмотрения ряда специальных вопросов, а также соответствующей подготовки читателя. Поэтому, говоря ниже о применениях лазеров, сосредоточим внимание лишь на чисто практических применениях и, в частности, промышленных применениях.

При обсуждении практических применений лазеров обычно выделяют два направления. Первое направление связывают с применениями, в которых лазерное излучение (как правило, достаточно высокой мощности) используется для целенаправленного воздействия на вещество. Сюда относят лазерную обработку материалов (например, сварку, термообработку, резку, пробивание отверстий), лазерное разделение изотопов, применения лазеров в медицине и т. д. Второе направление связывают с так называемыми информативными применениями лазеров - для передачи и обработки информации, для осуществления контроля и измерений.

Применение лазерного луча в промышленности и технике.

Оптические квантовые генераторы и их излучение нашли применение во многих отраслях промышленности. Так, например, в индустрии наблюдается применение лазеров для сварки, обработки и разрезания металлических и диэлектрических материалов и деталей в приборостроении, машиностроении и в текстильной промышленности.

Начиная с 1964 года, малопроизводительное механическое сверление отверстий стало заменяться лазерным сверлением. Термин лазерное сверление не следует понимать буквально. Лазерный луч не сверлит отверстие: он его пробивает за счет интенсивного испарения материала в точке воздействия. Пример такого способа сверления - пробивка отверстий в часовых камнях, которая сейчас уже является обычным делом. Для этой цели применяются твердотельные импульсные лазеры, например, лазер на стекле с неодимом. Отверстие в камне (при толщине заготовки около 0,1 - 0.5 мм.) пробивается серией из нескольких лазерных импульсов, имеющих энергию около 0,1 - 0,5 Дж. и длительностью около 10-4 с. Производительность установки в автоматическом режиме составляет 1 камень в секунду, что в 1000 раз выше производительности механического сверления.

Лазерная обработка металлов .Возможность получать с помощью лазеров световые пучки высокой мощности до 10 12 –10 16 вт/см 2 при фокусировки излучения в пятно диаметром до 10-100 мкм делает лазер мощным средством обработки оптически непрозрачных материалов, недоступных для обработки обычными методами (газовая и дуговая сварка). Это позволяет осуществлять новые технологические операции, например, просверливание очень узких каналов в тугоплавких материалах, различные операции при изготовлении пленочных микросхем, а также увеличения скорости обработки деталей. При пробивании отверстий в алмазных кругах сокращает время обработки одного круга с 2-3 дней до 2 мин. Наиболее широко применяется лазер в микроэлектронике, где предпочтительна сварка соединений, а не пайка. Основные преимущества: отсутствие механического контакта, возможность обработки труднодоступных деталей, возможность создания узких каналов, направленных под углом к обрабатываемой поверхности.

Лазер используется и при изготовлении сверхтонких проволок из меди, бронзы, вольфрама и других металлов. При изготовлении проволок применяют технологию протаскивания (волочения) проволоки сквозь отверстия очень малого диаметра. Эти отверстия (или каналы волочения) высверливают в материалах, обладающих особо высокой твердостью, например, в сверхтвердых сплавах. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую проволоку сквозь отверстия в алмазе (алмазные фильеры). Только они позволяют получить проволоку диаметром всего 10 мкм. Однако на механическое сверление одного отверстия в алмазе требуется 10 часов. Зато совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов. Как и в случае с пробивкой отверстий в часовых камнях, для сверления алмаза используются твердотельные импульсные лазеры.

Лазерное сверление широко применяется при получении отверстий в материалах, обладающих повышенной хрупкостью. В качестве примера можно привести подложки микросхем, изготовленные из глиноземной керамики. Из-за высокой хрупкости керамики механическое сверление выполняется на “сыром” материале. Обжигают керамику уже после сверления. При этом происходит некоторая деформация изделия, искажается взаимное расположение высверленных отверстий. При использовании “лазерных сверл” можно спокойно работать с керамическими подложками, уже прошедшими обжиг.

Интересно применение лазера и как универсального паяльника. Предположим, что внутри электронно-лучевой трубки произошла авария - перегорел или оборвался какой-нибудь провод, нарушился контакт. Трубка вышла из строя. Казалось бы, поломка неисправима, ведь ЭЛТ представляет собой устройство, все внутренние компоненты которого находятся в вакууме, внутри стеклянного баллона, и никакому паяльнику туда не проникнуть. Однако, лазерный луч позволяет решать и такие задачи. Направляя луч в нужную точку и должным образом фокусируя его, можно осуществить сварочную работу.

Лазеры с плавной перестройкой частоты служат основой для спектральных приборов с исключительно высокой разрешающей силой. Например, пусть требуется исследовать спектр поглощения какого-либо вещества. Измерив величину лазерного потока, падающего на изучаемый объект, и прошедшего через него, можно вычислить значение коэффициента поглощения. Перестраивая частоту лазерного излучения, можно, следовательно, определить коэффициент поглощения как функцию от длины волны. Разрешающая способность этого метода совпадает, очевидно, с шириной линии лазерного излучения, которую можно сделать очень малой. Ширина линии, равная, например, 10-3 см-1 обеспечивает такую же разрешающую способность, как и дифракционная решётка с рабочей поверхностью 5 м., а изготовление таких решёток представляет собой почти неразрешимую задачу.

Лазеры позволили осуществить светолокатор, с помощью которого расстояние до предметов измеряется с точностью до нескольких миллиметров. Такая точность недоступна для радиолокаторов.

В настоящее время в мире существует несколько десятков лазерных локационных систем. Многие из них уже имеют космическое значение. Они осуществляют локацию Луны и геодезических искусственных спутников Земли. В качестве примера можно назвать лазеро-локационную систему Физического института имени П. Н. Лебедева. Погрешность измерения при использовании данной системы составляет 40 см.

Проведение таких исследований организуется для того, чтобы точнее узнать расстояние до Луны в течение некоторого периода времени, например, в течение года. Исследуя графики, описывающие изменение этого расстояния со временем, ученые получают ответы на ряд вопросов, имеющих научную важность.

Импульсные лазерные локаторы сегодня применяются не только в космонавтике, но и в авиации. В частности, они могут играть роль научных измерителей высоты. Лазерный высотомер применялся также в космическом корабле “Аполлон” для фотографирования поверхности Луны.

Впрочем, у оптических лазерных систем есть и свои слабые стороны. Например, не так просто при помощи остронаправленного луча лазера обнаружить объект, так как время обзора контролируемой области пространства оказывается слишком большим. Поэтому оптические локационные системы используются вместе с радиолокационными. Последние обеспечивают быстрый обзор пространства, обнаруживают цель, а затем оптическая система измеряет параметры цели и осуществляет слежение за ней.

Большой интерес представляют последние разработки в области создания телевизора на основе лазерных технологий. Согласно ожиданиям специалистов, такой телевизор должен отличаться сверхвысоким качеством изображения.

Стоит также отметить использование лазеров в уже давно известных принтерах высокого качества или лазерных принтерах. В этих устройствах лазерное излучение используется для создания на специальном светочувствительном барабане скрытой копии печатаемого изображения.

Применение лазеров в военной технике (лазерная локация)

Наземная локация

За рубежом разрабатывается ряд стационарных лазерных локаторов. Эти локаторы предназначены для слежения за ракетами на начальном этапе полета, а также для слежения за самолетами и спутниками. Большое значение придается лазерному локатору, включенному в систему ПРО и ПКО. По проекту американской системы именно оптический локатор обеспечивает выдачу точных координат головной части или спутника в систему лазерного поражения цели. Локатор типа "ОПДАР" предназначен для слежения за ракетами на активном участке их полета. Тактические требования определяют незначительную дальность действия локатора, поэтому на нем установлен

газовый лазер, работающий на гелий-неоновой смеси, излучающий электромагнитную энергию на волне 0.6328мкм при входной мощности всего 0.01Вт. Лазер работает в непрерывном режиме, но его излучение модулируется с частотой 100МГц. Передающая оптическая система собрана из оптических элементов по схеме Кассагрена, что обеспечивает очень незначительную ширину расходимости луча. Локатор монтируется на основании, относительно которого он может с помощью следящей системы устанавливаться в нужном направлении с высокой точностью. Эта следящая система управляется сигналами, которые поступают через кодирующее устройство. Разрядность кода составляет 21 единицу двоичной информации, что позволяет устанавливать локатор в нужном направлении с точностью около одной угловой секунды. Приемная оптическая система имеет диаметр входной линзы 300мм. В ней установлен интерференционный фильтр, предназначенный для подавления фоновых помех, а также устройство, обеспечивающее фазовое детектирование отраженной ракетой сигналов. В связи с тем, что локатор работает по своим объектам, то с целью увеличения отражательной способности ракеты на нее устанавливается

зеркальный уголковый отражатель, который представляет собой систему из пяти рефлекторов, обеспечивающих распределение упавшей на них световой энергии таким образом, что основная ее часть идет в сторону лазерного локатора. Это повышает эффективность отражающей способности ракеты в тысячи раз. Локатор имеет три устройства слежения по углам: точный и грубый датчики по углам и еще инфракрасную следящую систему. Технические данные первого датчика определяются в основном оптическими характеристиками приемо-передающей системы. А так как диаметр входной оптической системы равен 300мм и фокусное расстояние равно 2000м, то это обеспечивает угловую разрешающую способность 80 угловых секунд. Сканирующее устройство имеет полосу пропускания 100Гц. Второй датчик имеет оптическую систему с диаметром 150мм и меньшее фокусное расстояние. Это дает разрешающую способность по углу всего 200 угловых секунд, т.е. обеспечивает меньшую точность, чем первый. В качестве приемников излучения оба канала оснащены фотоумножителями, т.е. наиболее чувствительными элементами из имеющихся. Перед приемником излучения располагается интерференционный фильтр с полосой пропускания всего в 1.5 ангстрема. Это резко снижает долю приходящего излучения от фона. Полоса пропускания согласована с длиной волны излучения лазера, чем обеспечивается прохождение на приемник только своего лазерного излучения. Локатор позволяет работать в пределах от 30 до 30000м. Предельная высота полета ракеты 18000м. Сообщается, что этот локатор обычно располагается от ракеты на расстоянии около 1000м и на линии, составляющей с плоскостью полета ракеты 45 градусов. Измерение параметров движения ракеты с такой высокой точностью на активном участке полета дает возможность точно рассчитать точку ее падения.

Локатор для слежения.

Локатор созданный по заказу НАСА и предназначенный для слежения за спутниками. Он предназначался для слежения за собственными спутниками и работал совместно с радиолокатором, который выдавал координаты спутника с низкой точностью. Эти координаты использовались для предварительного наведения лазерного локатора, который выдавал координаты с высокой точностью. Целью эксперимента было определение того, насколько отклоняется истинная траектория спутника от расчетной, - чтобы узнать распределение поля тяготения Земли по всей ее сфере. Для этого на полярную орбиту был запущен спутник "Эксплорер-22". Его орбита была рассчитана с высокой точностью, но в качестве исходных данных вложили информацию, что поле тяготения определяется формой Земли, т.е. использовали упрощенную модель. Если же теперь в процессе полета спутника наблюдалось уменьшение высоты его относительно расчетной траектории, то очевидно, что на этом участке имеются аномалии в поле тяготения. По спутнику "Эксплорер-22" была, по сообщению НАСА, проведена серия экспериментов и часть этих данных была опубликована. В одном из сообщений говорится, что на расстоянии 960 км ошибка в дальности составляла 3м. Минимальный угол, считываемый с кодируемого устройства, был равен всего пяти угловым секундам. Интересно, что в это время появилось сообщение, что американцев опередили в их работе французские инженеры и ученые. Сотрудники лаборатории Сан-Мишель де Прованс провели серию экспериментов по наблюдению за тем же спутником, используя лазерный локатор своего производства.

Голографические индикаторы на лобовом стекле.

Для использования в прицельно-навигационной системе ночного видения, предназначенной для истребителя F-16 и штурмовика A-10 был разработан голографический индикатор на лобовом стекле. В связи с тем, что габариты кабины самолетов невелики, то с тем, что-бы получить большое мгновенное поле зрения индикатора разработчиками было решено разместить коллимирующий элемент под приборной доской. Оптическая система включает три раздельных элемента, каждый из которых обладает свойствами дифракционных оптических систем: центральный изогнутый элемент выполняет функции коллиматора, два других элемента служат для изменения положения лучей. Разработан метод отображения на одном экране объединенной информации: в форме растра и в штриховой форме, что достигается благодаря использованию обратного хода луча при формировании растра с интервалом

времени 1.3мс, в течении которого на ТВ-экране воспроизводится информация в буквенно-цифровой форме и в виде графических данных, формируемых штриховым способом. Для экрана ТВ-трубки индикатора используется узкополосный люминофор, благодаря чему обеспечивается хорошая селективность голографической системы при воспроизведении изображений и пропускание света без розового оттенка от внешней обстановки. В процессе этой работы решалась проблема приведения наблюдаемого изображения в соответствие с изображением на индикаторе при полетах на малых высотах в ночное время (система ночного видения давала несколько увеличенное изображение), которым летчик не мог пользоваться, поскольку при этом несколько искажалась картина, которую можно бы было получить при визуальном обзоре. Исследования показали, что в этих случаях летчик теряет уверенность, стремится лететь с меньшей скоростью и на большой высоте. Необходимо было создать систему, обеспечивающую получение действительного изображения достаточно большого размера, чтобы летчик мог пилотировать самолет визуально ночью и в сложных метеоусловиях, лишь изредка сверяясь с приборами. Для этого потребовалось широкое поле индикатора, при котором расширяются возможности летчика по пилотированию самолета, обнаружению целей в стороне от маршрута и

производству противозенитного маршрута и маневра атаки целей. Для обеспечения этих маневров необходимо большое поле зрения по углу места и азимуту. С увеличением угла крена самолета летчик должен иметь широкое поле зрения во вертикали. Установка коллимирующего элемента как можно выше и ближе к глазам летчика была достигнута за счет применения голографических элементов в качестве зеркал для изменения направления пучка лучей. Это хотя и усложнило конструкцию, однако дало возможность использовать простые и дешевые голографические элементы с высокой отдачей.

В США разрабатывается голографический координатор для распознавания и сопровождения целей. Основным назначением такого коррелятора является выработка и контроль сигналов управления наведения ракеты на среднем и заключительном участках траектории полета. Это достигается путем мгновенного сравнения изображений земной поверхности, находящейся в поле зрения системы в нижней и передней полусфере, с изображением различных участков земной поверхности по заданной траектории, хранимым в запоминающем устройстве системы.. Таким образом обеспечивается возможность непрерывного определения местонахождения ракеты на траектории с использованием близко лежащих участков поверхности, что позволяет проводить коррекцию курса в условиях частичного затемнения местности облаками. Высокая точность на заключительном этапе полета достигается с помощью сигналов коррекции с частотой меньше 1 Гц. Для системы управления ракетой не требуется

инерциальная система координат и координаты точного положения цели. Как сообщается, исходные данные для данной системы должны обеспечиваться предварительной аэро- или космической разведкой и состоять из серии последовательных кадров, представляющих собой Фурье-спектр изображения или панорамные фотографии местности, как это делается при использовании существующего площадного коррелятора местности. Применение этой схемы, как утверждают специалисты, позволит производить пуски ракет с носителя, находящегося вне зоны ПВО противника, с любой высоты и точки траектории, при любом ракурсе, обеспечит высокую помехоустойчивость, наведения управляемого оружия после пуска по заранее выбранным и хорошо замаскированным стационарным целям. Образец аппаратуры включает в себя входной объектив, устройство преобразования текущего изображения, работающего в реальном масштабе времени, голографической линзовой матрицы, согласованной с голографическим запоминающим устройством, лазера, входного фотодетектора и электронных блоков. Особенностью данной схемы является использование линзовой матрицы из 100 элементов, имеющих формат 10x10. Каждая элементарная линза обеспечивает обзор всей входной аппаратуры и, следовательно, всего сигнала от поступающего на вход изображения местности или цели. На заданной фокальной плоскости образуется соответственно 100 Фурье спектров этого входного сигнала. Таким образом мгновенный входной сигнал адресуется одновременно к 100 позициям памяти. В соответствии в линзовой матрице изготавливается голографическая память большой емкости с использованием согласованных фильтров и учетом необходимых условий применения. Сообщается, что на этапе испытания системы был выявлен ряд ее

важных характеристик:

1. Высокая обнаружительная способность как при низкой, так и при высокой контрастности изображения, способность правильно опознать входную информацию, если даже имеется только часть ее.

2. Возможность плавного автоматического перехода сигналов сопровождения при смене одного изображения местности другим, содержащимся в запоминающем устройстве.

3. Возможность расширения зоны пуска ракеты путем запоминания несколько близко расположенных участков местности, из которых каждая имеет соответствующую ориентацию на цель. В процессе полета ракета может быстро переведена на заданную траекторию, зависящую от динамики ракеты.

Применение лазеров в медицине.

Лазеры широко применяются в медицине , особенно в офтальмологии , хирургии и онкологии , способные создать малое пятно, благодаря высокой монохроматичности и направленности. В офтальмологии лазерное излучение с энергией 0,2 – 0,3 дж позволяет осуществлять ряд сложных операций, не нарушая целостности самого глаза. Одной из таких операций является приварка и укрепление отслоившейся сетчатки с помощью коагуляционных спаек. Кроме того, лазерный луч применяется для выжигания злокачественных и доброкачественных опухолей. В хирургии сфокусированный световой луч непрерывного лазера (мощностью до 100 Вт ) служит чрезвычайно острым и стерильным скальпелем, осуществляющим бескровные операции даже на печени и селезенке. Весьма перспективно использование непрерывных и импульсных лазеров для прижигания ран и остановки кровотечений у больных с пониженной свертываемостью крови.

Использование лазерного скальпеля для проведения хирургических операций определяют следующие свойства:

Он производит относительно бескровный разрез, так как одновременно с рассечением тканей он коагулирует края раны “заваривая” не слишком крупные кровеносные сосуды;

Лазерный скальпель отличается постоянством режущих свойств. Попадание на твердый предмет (например, кость) не выводит скальпель из строя. Для механического скальпеля такая ситуация стала бы фатальной;

Лазерный луч в силу своей прозрачности позволяет хирургу видеть оперируемый участок. Лезвие же обычного скальпеля, равно как и лезвие электроножа, всегда в какой-то степени загораживает от хирурга рабочее поле;

Лазерный луч рассекает ткань на расстоянии, не оказывая никакого механического воздействия на ткань;

Лазерный скальпель обеспечивает абсолютную стерильность, ведь с тканью взаимодействует только излучение;

Луч лазера действует строго локально, испарение ткани происходит только в точке фокуса. Прилегающие участки ткани повреждаются значительно меньше, чем при использовании механического скальпеля;

Как показала клиническая практика, рана от лазерного скальпеля почти не болит и быстрее заживляется.

Практическое применение лазеров в хирургии началось в СССР в 1966 году в институте имени А. В. Вишневского. Лазерный скальпель был применен в операциях на внутренних органах грудной и брюшной полостей. В настоящее время лазерным лучом делают кожно-пластические операции, операции пищевода, желудка, кишечника, почек, печени, селезенки и других органов. Очень заманчиво проведение операций с использованием лазера на органах, содержащих большое количество кровеносных сосудов, например, на сердце, печени.

    Характеристики некоторых типов лазеров.

В настоящее время имеется громадное разнообразие лазеров, отличающихся между собой активными средами, мощностями, режимами работы и другими характеристиками. Нет необходимости все их описывать. Поэтому здесь даётся краткое описание лазеров, которые достаточно полно представляют характеристики основных типов лазеров (режим работы, способы накачки и т. д.)

Рубиновый лазер . Первым квантовым генератором света был рубиновый лазер, созданный в 1960 году. Рабочим веществом является рубин, представляющий собой кристалл оксида алюминия Аl2O3 (корунд), в который при выращивании введен в виде примеси оксид хрома Сr2Оз. Красный цвет рубина обусловлен положительным ионом Сr+3. В решетке кристалла Аl2О3 ион Сг+3 замещает ион Аl+3. Вследствие этого в кристалле возникают две полосы поглощения: одна-в зеленой, другая-в голубой части спектра. Густота красного цвета рубина зависит от концентрации ионов Сг+3: чем больше концентрация, тем гуще красный цвет. В темно-красном рубине концентрация ионов Сг+3 достигает 1%.

При облучении рубина белым светом голубая и зеленая части спектра поглощаются, а красная отражается. В рубиновом лазере используется оптическая накачка ксеноновой лампой, которая дает вспышки света большой интенсивности при прохождении через нее импульса тока, нагревающего газ до нескольких тысяч Кельвин. Непрерывная накачка невозможна, потому что лампа при столь высокой температуре не выдерживает непрерывного режима работы. Возникающее излучение близко по своим характеристикам к излучению абсолютно черного тела. Излучение поглощается ионами Cr+, переходящими в результате этого на энергетические уровни в области полос поглощения. Однако с этих уровней ионы Сr+3 очень быстро в результате безызлучательного перехода переходят на уровни Е1, Е1’. При этом излишек энергии передается решетке, т. е. превращается в энергию колебаний решетки или, другими словами, в энергию фотонов. Уровни Е1, Е1’ метастабильны. Время жизни на уровне Е1 равно 4,3 мс. В процессе импульса накачки на уровнях Е1, Е1’ накапливаются возбужденные атомы, создающие значительную инверсную заселенность относительно уровня Е0 (это уровень невозбужденных атомов).

Кристалл рубина выращивается в виде круглого цилиндра. Для лазера обычно используют кристаллы размером: длина L = 5 см, диаметр d = 1 см. Ксеноновая лампа и кристалл рубина помещаются в эллиптическую полость с хорошо отражающей внутренней поверхностью. Чтобы обеспечить попадание на рубин всего излучения ксеноновой лампы, кристалл рубина и лампа, имеющая также форму круглого цилиндра, помещаются в фокусы эллиптического сечения полости параллельно ее образующим. Благодаря этому на рубин направляется излучение с плотностью, практически равной плотности излучения на источнике накачки.

Один из концов рубинового кристалла срезан так, что от граней среза обеспечивается полное отражение и возвращение луча обратно. Такой срез заменяет одно из зеркал лазера. Второй конец рубинового кристалла срезан под углом Брюстера. Он обеспечивает выход из кристалла рубина без отражения луча с соответствующей линейной поляризацией. Второе зеркало резонатора ставится на пути этого луча. Таким образом, излучение рубинового лазера линейно поляризовано.

Гелий-неоновый лазер . Активной средой является газообразная смесь гелия и неона. Генерация осуществляется за счет переходов между энергетическими уровнями неона, а гелий играет роль посредника, через который энергия передается атомам неона для создания инверсной заселенности.

Неон, в принципе, может генерировать лазерное изучение в результате более 130 различных переходов. Однако наиболее интенсивными являются линии с длиной волны 632,8 нм, 1,15 и 3,39 мкм. Волна 632,8 нм находится в видимой части спектра, а волны 1,15 и 3,39 мкм - в инфракрасной.

При пропускании тока через гелий-неоновую смесь газов электронным ударом атомы гелия возбуждаются до состояний 23S и 22S, которые являются метастабильными, поскольку переход в основное состояние из них запрещен квантово-механическими правилами отбора. При прохождении тока атомы накапливаются на этих уровнях. Когда возбужденный атом гелия сталкивается с невозбужденным атомом неона, энергия возбуждения переходит к последнему. Этот переход осуществляется очень эффективно вследствие хорошего совпадения энергии соответствующих уровней. Вследствие этого на уровнях 3S и 2S неона образуется инверсная заселенность относительно уровней 2P и 3P, приводящая к возможности генерации лазерного излучения. Лазер может оперировать в непрерывном режиме. Излучение гелий-неонового лазера линейно поляризовано. Обычно давление гелия в камере составляет 332 Па, а неона - 66 Па. Постоянное напряжение на трубке около 4 кВ. Одно из зеркал имеет коэффициент отражения порядка 0,999, а второе, через которое выходит лазерное излучение, - около 0,990. В качестве зеркал используют многослойные диэлектрики, поскольку более низкие коэффициенты отражения не обеспечивают достижения порога генерации.

Газовые лазеры . Они представляют собой, пожалуй, наиболее широко используемый в настоящее время тип лазеров и, возможно, в этом отношении они превосходят даже рубиновые лазеры. Газовым лазерам также посвящена большая часть выполненных исследований. Среди различных типов газовых лазеров всегда можно найти такой, который будет удовлетворять почти любому требованию, предъявляемому к лазеру, за исключением очень большой мощности в видимой области спектра в импульсном режиме. Большие мощности необходимы для многих экспериментов при изучении нелинейных оптических свойств материалов. В настоящее время большие мощности в газовых лазерах не получены по той простой причине, что плотность атомов в них недостаточно велика. Однако почти для всех других целей можно найти конкретный тип газового лазера, который будет превосходить как твердотельные лазеры с оптической накачкой, так и полупроводниковые лазеры. Много усилий было направлено на то, чтобы эти лазеры могли конкурировать с газовыми лазерами, и в ряде случаев был достигнут определенный успех, однако он всегда оказывался на грани возможностей, в то время как газовые лазеры не обнаруживают никаких признаков уменьшения популярности.

Особенности газовых лазеров часто обусловлены тем, что они, как правило, являются источниками атомных или молекулярных спектров. Поэтому длины волн переходов точно известны. Они определяются атомной структурой и обычно не зависят от условий окружающей среды. Стабильность длины волны генерации при определенных усилиях может быть значительно улучшена по сравнению со стабильностью спонтанного излучения. В настоящее время имеются лазеры с монохроматичностью, лучшей, чем в любом другом приборе. При соответствующем выборе активной среды может быть осуществлена генерация в любой части спектра, от ультрафиолетовой (~2ООО А) до далекой инфракрасной области (~ 0,4 мм), частично захватывая микроволновую область.

Нет также оснований сомневаться, что в будущем удастся создать лазеры для вакуумной ультрафиолетовой области спектра. Разреженность рабочего газа обеспечивает оптическую однородность среды с низким коэффициентом преломления, что позволяет применять простую математическую теорию для описания структуры мод резонатора и дает уверенность в том, что свойства выходного сигнала близки к теоретическим. Хотя КПД превращения электрической энергии в энергию вынужденного излучения в газовом лазере не может быть таким большим, как в полупроводниковом лазере, однако благодаря простоте управления разрядом газовый лазер оказывается для большинства целей наиболее удобным в работе как один из лабораторных приборов. Что касается большой мощности в непрерывном режиме (в противоположность импульсной мощности), то природа газовых лазеров позволяет им в этом отношении превзойти все другие типы лазеров.

С02-лазер с замкнутым объемом . Молекулы углекислого газа, как и другие молекулы, имеют полосатый спектр, обусловленный наличием колебательных и вращательных уровней энергии. Используемый в CO2 - лазере переход дает излучение с длиной волны 10,6 мкм, т. е. лежит в инфракрасной области спектра. Пользуясь колебательными уровнями, можно несколько варьировать частоту излучения в пределах примерно от 9,2 до 10,8 мкм. Энергия молекулам CO2 передается от молекул азота N2, которые сами возбуждаются электронным ударом при прохождении тока через смесь.

Возбужденное состояние молекулы азота N2 является метастабильным и отстоит от основного уровня на расстоянии 2318 см -1, что весьма близко к энергетическому уровню (001) молекулы CO2. Ввиду метастабильности возбужденного состояния N2 при прохождении тока число возбужденных атомов накапливается. При столкновении N2 с CO2 происходит резонансная передача энергии возбуждения от N2 к CO2. Вследствие этого возникает инверсия заселенностей между уровнями (001), (100), (020) молекул CO2. Обычно для уменьшения заселенности уровня (100), который имеет большое время жизни, что ухудшает генерацию при переходе на этот уровень, добавляют гелий. В типичных условиях смесь газов в лазере состоит из гелия (1330 Па), азота (133 Па) и углекислого газа (133 Па).

При работе CO2 - лазера происходит распад молекул CO2 на СО и О, благодаря чему активная среда ослабляется. Далее СО распадается на С и О, а углерод осаждается на электродах и стенках трубки. Всё это ухудшает работу СO2-лазера. Чтобы преодолеть вредное действие этих факторов в закрытую систему добавляют пары воды, которые стимулируют реакцию

СО CO2.+ О

Используются платиновые электроды, материал которых является катализатором для этой реакции. Для увеличения запаса активной среды резонатор соединяется с дополнительными емкостями, содержащими CO2, N2, Не, которые в необходимом количестве добавляются в объём резонатора для поддержания оптимальных условий работы лазера. Такой закрытый CO2-лазер, в состоянии работать в течение многих тысяч часов.

Проточный СО2-лазер. Важной модификацией является проточный СО2-лазер, в котором смесь газов CO2, N2, Не непрерывно прокачивается через резонатор. Такой лазер может генерировать непрерывное когерентное излучение мощностью свыше 50 Вт на метр длины своей активной среды.

Неодимовый лазер. Название может ввести в заблуждение. Телом лазера является не металл неодим, а обычное стекло с примесью неодима. Ионы атомов неодима беспорядочно распределены среди атомов кремния и кислорода. Накачка производятся лампами-молниями. Лампы дают излучение в пределах длин волн от 0,5 до 0,9 мкм. Возникает широкая полоса возбужденных состояний. Атомы совершают безызлучательные переходы на верхний лазерный уровень. Каждый переход дает разную энергию, которая превращается в колебательную энергию всей «решетки» атомов.

Лазерное излучение, т.е. переход на пустой нижний уровень, имеет длину волны 1,06 мкм.

Т-лазер . Во многих практических приложениях важную роль играет СO2-лазер, в котором рабочая смесь находится под атмосферным давлением и возбуждается поперечным электрическим полем (Т-лазер). Поскольку электроды расположены параллельно оси резонатора, для получения больших значений напряженности электрического поля в резонаторе требуются сравнительно небольшие разности потенциалов между электродами, что дает возможность работать в импульсном режиме при атмосферном давлении, когда концентрация CO2 в резонаторе велика. Следовательно, удается получить большую мощность, достигающую обычно 10 МВт и больше в одном импульсе излучения продолжительностью менее 1 мкс. Частота повторения импульсов в таких лазерах составляет обычно несколько импульсов в минуту.

Газодинамические лазеры . Нагретая до высокой температуры (1000-2000 К) смесь CO2 и N2 при истечении с большой скоростью через расширяющееся сопло сильно охлаждается. Верхний и нижний энергетический уровни при этом термоизолируются с различной скоростью, в результате чего образуется инверсная заселенность. Следовательно, образовав на выходе из сопла оптический резонатор, можно за счет этой инверсной заселенности генерировать лазерное излучение. Действующие на этом принципе лазеры называются газодинамическими. Они позволяют получать очень большие мощности излучения в непрерывном режиме.

Лазеры на красителях . Красители являются очень сложными молекулами, у которых сильно выражены колебательные уровни энергии. Энергетические уровни в полосе спектра располагаются почти непрерывно. Вследствие внутримолекулярного взаимодействия молекула очень быстро (за времена порядка 10-11-10-12 с) переходит безызлучательно на нижний энергетический уровень каждой полосы. Поэтому после возбуждения молекул через очень короткий промежуток времени на нижнем уровне полосы Е1 сосредоточатся все возбужденные молекулы. Они далее имеют возможность совершить излучательный переход на любой из энергетических уровней нижней полосы. Таким образом, возможно излучение практически любой частоты в интервале, соответствующем ширине нулевой полосы. А это означает, что если молекулы красителя взять в качестве активного вещества для генерации лазерного излучения, то в зависимости от настройки резонатора можно получить практически непрерывную перестройку частоты генерируемого лазерного излучения. Поэтому на красителях создаются лазеры с перестраиваемой частотой генерации. Накачка лазеров на красителях производится газоразрядными лампами или излучением других лазеров.

Выделение частот генерации достигается тем, что порог генерации создается только для узкой области частот. Например, положения призмы и зеркала подбираются так, что в среду после отражения от зеркала благодаря дисперсии и разным углам преломления возвращаются лишь лучи с определенной длиной волны. Только для таких длин волн обеспечивается лазерная генерация. Вращая призму, можно обеспечить непрерывную перестройку частоты излучения лазера на красителях. Генерация осуществлена со многими красителями, что позволило получить лазерное излучение не только во всем оптическом диапазоне, но и на значительной части инфракрасной и ультрафиолетовой областей спектра.

Полупроводниковые лазеры . Основным примером работы полупроводниковых лазеров является магнитно-оптический накопитель (МО).

МО накопитель построен на совмещении магнитного и оптического принципа хранения информации. Записывание информации производится при помощи луча лазера и магнитного поля, а считывание при помощи одного только лазера.

В процессе записи на МО диск лазерный луч нагревает определенные точки на диски, и под воздействием температуры сопротивляемость изменения полярности, для нагретой точки, резко падает, что позволяет магнитному полю изменить полярность точки. После окончания нагрева сопротивляемость снова увеличивается. Полярность нагретой точки остается в соответствии с магнитным полем, примененным к ней в момент нагрева.

В имеющихся на сегодняшний день МО накопителях для записи информации применяются два цикла: цикл стирания и цикл записи. В процессе стирания магнитное поле имеет одинаковую полярность, соответствующую двоичным нулям. Лазерный луч нагревает последовательно весь стираемый участок и таким образом записывает на диск последовательность нулей. В цикле записи полярность магнитного поля меняется на противоположную, что соответствует двоичной единице. В этом цикле лазерный луч включается только на тех участках, которые должны содержать двоичные единицы, оставляя участки с двоичными нулями без изменений.

В процессе чтения с МО диска используется эффект Керра, заключающийся в изменении плоскости поляризации отраженного лазерного луча, в зависимости от направления магнитного поля отражающего элемента. Отражающим элементом в данном случае является намагниченная при записи точка на поверхности диска, соответствующая одному биту хранимой информации. При считывании используется лазерный луч небольшой интенсивности, не приводящий к нагреву считываемого участка, таким образом при считывании хранимая информация не разрушается.

Такой способ в отличие от обычного применяемого в оптических дисках не деформирует поверхность диска и позволяет повторную запись без дополнительного оборудования. Этот способ также имеет преимущество перед традиционной магнитной записью в плане надежности. Так как перемагничеваниие участков диска возможно только под действием высокой температуры, то вероятность случайного перемагничевания очень низкая, в отличие от традиционной магнитной записи, к потери которой могут привести случайные магнитные поля.

Область применения МО дисков определяется его высокими характеристиками по надежности, объему и сменяемости. МО диск необходим для задач, требующих большого дискового объема. Это такие задачи, как обработка изображений звука. Однако небольшая скорость доступа к данным, не дает возможности применять МО диски для задач с критичной реактивностью систем. Поэтому применение МО дисков в таких задачах сводится к хранению на них временной или резервной информации. Для МО дисков очень выгодным использованием является резервное копирование жестких дисков или баз данных. В отличие от традиционно применяемых для этих целей стримеров, при хранение резервной информации на МО дисках, существенно увеличивается скорость восстановления данных после сбоя. Это объясняется тем, что МО диски являются устройствами с произвольным доступом, что позволяет восстанавливать только те данные, в которых обнаружился сбой. Кроме этого при таком способе восстановления нет необходимости полностью останавливать систему до полного восстановления данных. Эти достоинства в сочетании с высокой надежностью хранения информации делают применение МО дисков при резервном копировании выгодным, хотя и более дорогим по сравнению со стримерами.

Применение МО дисков, также целесообразно при работе с приватной информацией больших объемов. Легкая сменяемость дисков позволяет использовать их только во время работы, не заботясь об охране компьютера в нерабочее время, данные могут храниться в отдельном, охраняемом месте. Это же свойство делает МО диски незаменимыми в ситуации, когда необходимо перевозить большие объемы с места на место, например с работы домой и обратно.

Основные перспективы развития МО дисков связаны прежде всего с увеличением скорости записи данных. Медленная скорость определяется в первую очередь двухпроходным алгоритмом записи. В этом алгоритме нули и единицы пишутся за разные проходы из-за того, что магнитное поле, задающие направление поляризации конкретных точек на диске, не может изменять свое направление достаточно быстро.

Наиболее реальная альтернатива двухпроходной записи - это технология, основанная на изменение фазового состояния. Такая система уже реализована некоторыми фирмами-производителями. Существуют еще несколько разработок в этом направлении, связанные с полимерными красителями и модуляциями магнитного поля и мощности излучения лазера.

Технология, основанная на изменении фазового состояния, основана на способности вещества переходить из кристаллического состояния в аморфное. Достаточно осветить некоторую точку на поверхности диска лучом лазера определенной мощности, как вещество в этой точке перейдет в аморфное состояние. При этом изменяется отражающая способность диска в этой точке. Запись информации происходит значительно быстрее, но при этом деформируется поверхность диска, что ограничивает число циклов перезаписи.

В настоящие время уже разрабатывается технология, позволяющая менять полярность магнитного поля на противоположную всего за несколько наносекунд. Это позволит изменять магнитное поле синхронно с поступлением данных на запись. Существует также технология, построенная на модуляции излучения лазера. В этой технологии дисковод работает в трех режимах: режим чтения с низкой интенсивностью, режим записи со средней интенсивностью и режим записи с высокой интенсивностью. Модуляция интенсивности лазерного луча требует более сложной структуры диска и дополнения механизма дисковода инициализирующим магнитом, установленным перед магнитом смещения и имеющим противоположную полярность. В самом простом случае диск имеет два рабочих слоя - инициализирующий и записывающий. Инициализирующий слой сделан из такого материала, что инициализирующий магнит может изменять его полярность без дополнительного воздействия лазера.

Безусловно МО диски перспективные и бурно развивающиеся устройства, которые могут решать назревающие проблемы с большими объемами информации. Но их дальнейшее развитие зависит не только от технологии записи на них, но и от прогресса в области других носителей информации. И если не будет изобретен более эффективный способ хранения информации, МО диски возможно займут доминирующие роли.

Голография. Метод фотографирования, используемый для сохранения изображения предметов, известен уже довольно долгое время и сейчас это самый доступный способ получения изображения объекта на каком-либо носителе (фотобумага, фотоплёнка). Однако информация, содержащаяся в фотографии весьма ограничена. В частности, отсутствует информация о расстояниях различных частей объекта от фотопластинки и других важных характеристиках. Другими словами, обычная фотография не позволяет восстановить полностью тот волновой фронт, который на ней был зарегистрирован. В фотографии содержится более или менее точная информация об амплитудах зафиксированных волн, но полностью отсутствует информация о фазах волн.

Голография позволяет устранить этот недостаток обычной фотографии и записать на фотопластинке информацию не только об амплитудах падающих на неё волн, но и о фазах, то есть полную информацию. Восстановленная с помощью такой записи волна полностью идентична первоначальной и содержит в себе всю информацию, которую содержала первоначальная волна. Поэтому метод был назван голографией, то есть методом полной записи волны.

Для того чтобы осуществить этот метод в световом диапазоне, необходимо иметь излучение с достаточно высокой степенью когерентности. Такое излучение можно получить при помощи лазера. Поэтому только после создания лазеров, дающих излучение с высокой степенью когерентности, удалось практически осуществить голографию.

Первоначальная задача голографии заключалась в получении объёмного изображения. С развитием голографии на толстослойных пластинах возникла возможность создания объёмных цветных фотографий. На этой базе исследуются пути реализации голографического кино, телевидения и т. д.

Один из методов прикладной голографии, именуемый голографической интерферометрией, нашел очень широкое распространение. Суть метода в следующем. На одну фотопластинку последовательно регистрируются две интерференционные картины, соответствующие двум разным, но мало отличающимся состояниям объекта, например, при деформации. При просвечивании такой “двойной” голограммы образуются, очевидно, два изображения объекта, измененные относительно друг друга в той же мере, что и объект в двух его состояниях. Восстановленные волны, формирующие эти два изображения, когерентны, интерферируют, и на новом изображении наблюдаются интерференционные полосы, которые и характеризуют изменение состояния объекта.

В другом варианте голограмма изготавливается для какого-то определенного состояния объекта. При просвечивании ее объект не удаляется и производится его повторное освещение, как на первом этапе голографирования. Тогда опять получается две волны, одна формирует голографическое изображение, а другая распространяется от самого объекта. Если теперь происходят какие-то изменения в состоянии объекта (в двух последовательных волнами возникает разность сравнении с тем, что было во время экспонирования голограммы), то между указанными хода, и изображение покрывается интерференционными полосами. Описанный способ применяется для исследования деформаций предметов, их вибраций, поступательного движения и вращений, неоднородности прозрачных объектов и т. п.

Интересно применение голографии в качестве носителя информации. Часто необходимо получить объемное изображение предмета, которого еще не существует, и следовательно, нельзя получить голограмму такого предмета оптическими методами. В этом случае голограмма рассчитывается на ЭВМ (цифровая голограмма) и результаты расчета соответствующим образом переносятся на фотопластинку. С полученной таким способом машинной голограммы объемное изображение предмета восстанавливается обычным оптическим способам. Поверхность предмета, полученного по машинной голограмме, используется как эталон, с которым методами голографической интерференции производится сравнение поверхности реального предмета, изготовляемого соответствующими инструментами. Голографическая интерферометрия позволяет произвести сравнение поверхности изготовленного предмета и эталона с чрезвычайно большой точностью до долей длины волны. Это дает возможность изготовлять с такой же большой точностью очень сложные поверхности, которые было бы невозможно изготовить без применения цифровой голографии и методов голографической интерферометрии. Само собой разумеется, что для сравнения эталонной поверхности с изготовляемой не обязательно восстанавливать оптическим способом машинную голограмму. Можно снять голограмму предмета, перевести ее на цифровой язык ЭВМ и сравнить с цифровой голограммой. Оба эти пути в принципе эквивалентны.

Особенности голограмм как носителей информации делают весьма перспективными разработки по созданию голографической памяти, которая характеризуется большим объемом, надежностью, быстротой считывания и т. д.

Заключение.

Лазеры решительно и притом широким фронтом вторгаются в нашу действительность. Они необычайно расширили наши возможности в самых различных областях - обработке металлов, медицине, измерении, контроле, физических, химических и биологических исследованиях. Уже сегодня лазерный луч овладел множеством полезных и интересных профессий. Во многих случаях использование лазерного луча позволяет получить уникальные результаты. Можно не сомневаться, что в будущем луч лазера подарит нам новые возможности, представляющиеся сегодня фантастическими.

Появление лазеров сразу оказало и продолжает оказывать влияние на различные области науки и техники, где стало возможным применение лазеров для решения конкретных научных и технических задач. Проведенные исследования подтвердили возможность значительного улучшения многих оптических приборов и систем при использовании в качестве источника света лазеров и привели к созданию принципиально новых устройств (усилители яркости, квантовые гирометры, быстродействующие оптические схемы и др.). На глазах одного поколения произошло формирование новых научных и технических направлений - голографии, нелинейной и интегральной оптики, лазерных технологий, лазерной химии, использование лазеров для управляемого термоядерного синтеза и других задач энергетики. Уникальные свойства лазерного излучения обеспечили значительный прогресс или привели к совершенно новым научным и техническим решениям.

Высокая монохроматичность и когерентность лазерного излучения обеспечивают успешное применение лазеров в спектроскопии, иницировании химических реакций, в разделении изотопов, в системах измерения линейных и угловых скоростей, во всех приложениях, основанных на использовании интерференции, в системах связи и светолокации. Особо следует, очевидно, выделить применение лазеров в голографии.

Высокая плотность энергии и мощность лазерных пучков, возможность фокусировки лазерного излучения в пятно малых размеров используются в лазерных системах термоядерного синтеза, в таких технологических процессах, как лазерная резка, сварка, сверление, поверхностное закаливание и размерная обработка различных деталей. Эти же свойства и направленность лазерного излучения обеспечивают успешное применение лазеров в военной технике. Направленность лазерного излучения, его малая расходимость применяются при провешивании направлений (в строительстве, геодезии, картографии), для целенаведения и целеуказания, в локации, в том числе и для измерения расстояний до искусственных спутников Земли, в системах связи через космос и подводной связи. С созданием лазеров произошел колоссальный прогресс в развитии нелинейной оптики, исследовании и использовании таких явлений, как генерация гармоник, самофокусировка световых пучков, многофотонного поглощения, различных типов рассеивания света, вызванных полем лазерного излучения. Лазеры успешно используются в медицине: в хирургии (в том числе хирургии глаза) и терапии различных заболеваний, в биологии, где фокусировка в малое пятно позволяет действовать на отдельные клетки или даже на их части.

Мы уже начали привыкать, что “лазер все может”. Подчас это мешает трезво оценить реальные возможности лазерной техники на современном этапе ее развития. Неудивительно, что чрезмерные восторги по поводу возможностей лазера иногда сменяются некоторым охлаждением к нему. Все это, однако, не может замаскировать основной факт - с изобретением лазера человечество получило в свое распоряжение качественно новый, в высокой степени универсальный, очень эффективный инструмент для повседневной, производственной и научной деятельности. С годами этот инструмент будет все более совершенствоваться, а вместе с этим будет непрерывно расширяться и область применения лазеров.

Список использованной литературы

    Кабардин О. Ф.“Физика” М.: Просвещение, 1988г.

    ”Газовые лазеры” (под. ред. Н.Н. Соболева) М.: Мир, 1968г.

    Айден К. Аппаратные средства PC: перевод с нем. - Санкт-Петербург: BHV - СПб, 1996.

    Китайгородский А. И. Физика для всех: Фотоны и ядра. - М.: Наука, 1982.

    Ландсберг Г. С. Оптика. - М.: Наука, 1976.

    Ландсберг Г. С. Элементарный учебник физики. - М.: Наука, 1986.

    Матвеев А. Н. Оптика. - М.: Высшая школа, 1985..

    Мякишев Г. Я., Буховцев Б. Б. Физика. - М.: Просвещение, 1998.

    Сивухин В. А. Общий курс физики. Оптика. - М.: Наука, 1980.

    Тарасов Л. В. Лазеры. Действительность и надежды. - М.: Наука, 1985.

    Донина Н.М. Возникновение квантовой электроники. М.: Наука, 1974.

    Карлов Н.В. Лекции по квантовой электронике. М.: Наука, 1988.

    Тарасов Л.В. Физика процессов в генераторах когерентного оптического излучения. М.: Радио и связь, 1981.

    Брюннер В., Юнге К. Справочник по лазерной технике. / Под ред. А.П. Напартовича. М.: Энергоатомиздат, 1991.

    Приезжев А.В., Тучин В.В., Шубочкин Л.П. Лазерная диагностика в биологии и медицине. М.: Наука, 1989.

    лазеров и их применение Реферат >> Физика

    4. Основные свойства лазерного луча 5. Применение лазеров Практическое и промышленное применение лазера Лазеры в вычислительной технике Лазерный принтер... электронно-дырочных пар протекает процесс их рекомбинации, сопровождающийся образованием кванта...

  1. Лазеры . Строение и применение

    Реферат >> Физика

    ... их звенья. Роль лазеров в фундаментальных научных исследованиях исключительно велика. При обсуждении практических применения лазеров ... и их излучение нашли применение во многих отраслях промышленности. Так, например, в индустрии наблюдается применение лазеров ...

  2. Теория и практика применения лазерной спектроскопии (на примере анализа объектов окружающей среды)

    Контрольная работа >> Экология

    Введение 1. Лазерная спектроскопия 2. Виды лазеров и их применение 3. Современное оборудование 4. Применение лазерной спектроскопии в анализе объектов...

«Лазерное излучение»

Введение

Лазерное излучение является одним из наиболее интересных научно-технических достижений ХХ века. Создание лазеров привело ко второму рождению научной и технической оптики и развитию совершенно новых отраслей промышленности. В отличие от обычных, тепловых источников излучения лазер дает свет, обладающий целым рядом особых и очень ценных свойств.
Важно, что лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. А это дало возможность освоить диапазон видимого света для осуществления передачи информации и связи, тем самым существенно увеличив количество передаваемой информации в единицу времени.
Вследствие того, что вынужденное излучение распространяется строго вдоль оси резонатора, лазерный луч расширяется слабо: его расходимость составляет несколько угловых секунд. 1
Эти перечисленные качества позволяют фокусировать лазерный луч в пятно чрезвычайно малого размера, получая в точке фокуса огромную плотность энергии. Лазерное излучение большой мощности имеет огромную температуру. Так, например, импульсный лазер мощностью 1015 Вт имеет температуру излучения около 100 миллионов градусов. Благодаря этим свойствам лазеры нашли применение в различных областях науки, техники и медицины. Очень перспективно применение лазерного излучения для космической связи, в оптических локаторах, измеряющих большие расстояния с точностью до миллиметров, для передачи телевизионных и компьютерных сигналов по оптическому волокну. Лазеры используются при считывании информации с компакт-дисков, со штрих-кодов товаров. С помощью луча лазеров малой интенсивности можно проводить хирургические операции, например «приваривать» отслоившуюся от глазного дна сетчатку, делать сосудистые операции. В обработке материалов при помощи лазера осуществляют сварку, резку, сверление очень маленьких отверстий с высокой точностью. Перспективно использование мощного лазерного излучения для осуществления управляемой термоядерной реакции. Лазеры применяются также для топографической съемки, потому что луч лазера задает идеальную прямую линию. Направление тоннеля под проливом Ла-Манш задавалось лазерным лучом. С помощью лазерного излучения получаются голографические трехмерные объемные изображения. В метрологии лазер применяется при измерении длины, скорости, давления. Создание лазеров результат использования фундаментальных физических законов в прикладных исследованиях. Оно привело к гигантскому прогрессу в различных областях техники и технологии. Создание лазера стало определяющим фактором и в развитии оптических систем передачи. Сказанным выше, определяется актуальность исследования в данной работе.
Целью данной работы является изучить лазерное излучение. Задачами данной работы являются рассмотреть:
- свойства лазерного излучения;
- краткую историю возникновения и усовершенствования лазеров;
- источники, свойства и типы лазеров;
- вредное действие лазерного излучения;
- классы безопасности лазеров и средства защиты.

1. Лазерная техника

Лазерная техника еще очень молода - ей нет и полувека. Однако за это совсем небольшое время лазер из любопытного лабораторного устройства превратился в средство научного исследования, в инструмент, применяемый в промышленности. Трудно найти такую область современной техники, где бы не работали лазеры. Их излучение используется для связи, записи и чтения информации, для точных измерений; они незаменимы в медицине хирургии и терапии. Многие учёные считают, что кардинальные изменения, которые лазер внёс в жизнь человека, - подобны последствиям промышленного применения электричества в конце XIX века.
Большие возможности лазерной технологии объясняются особыми свойствами лазерного излучения. Его природу изучает квантовая механика. Именно её законы описывают процессы, происходящие в лазере, поэтому его также называют оптическим квантовым генератором.
Таким образом, свет - это поток испускаемых атомами особых частиц - фотонов, или квантов электромагнитного излучения. Их следует представлять себе в виде отрезков волны, а не как частицы вещества. Каждый фотон несёт строго определённую порцию энергии, выброшенной атомом. 2
Излученные фотоны абсолютно идентичны, их частоты равны и фазы одинаковы. Когда они встретятся с двумя возбужденными атомами, фотонов станет 4. Потом 8, 16 и т. д. Возникнет лавина неотличимых друг от друга фотонов, образующих так называемое монохроматическое (одноцветное) когерентное излучение. Это вынужденное излучение обладает целым рядом интересных свойств.
Лазерное излучение имеет очень высокую температуру. Её величина зависит от мощности излучения и достигает порой миллионов градусов.
При этом лазер излучает энергию на одной частоте, на одной длине волны. Раньше такое монохроматическое излучение получали только в диапазоне радиоволн. Свет, испускаемый даже очень маленьким кусочком раскалённого вещества, всегда состоит из волн самой разной частоты. По этой причине в оптике никак не удавалось, например, создать узконаправленные и сфокусированные пучки излучения, которыми радиоинженеры пользуются уже не один десяток лет.
Так же, лазерное излучение очень стабильно. Электромагнитная волна, которую генерирует лазер, распространяется на многие километры не изменяясь. Её амплитуда, частота и фаза могут оставаться постоянными очень долго. Это качество называется высокой пространственной и временной когерентностью.
Эти три особенности лазерного излучения нашли применение в самых разных отраслях техники, при решении различных технологических задач. Для каждого случая можно подобрать лазер нужного типа и требуемой мощности. 3

2. Характеристика лазеров

2.1 Рождения семейства лазеров

То, как получить когерентное излучение, стало в общих чертах понятно в 1918 году когда Альберт Эйнштейн предсказал явление вынужденного излучения. Если создать среду, в которой атомы находятся в возбуждённом состоянии, и «запустить в неё слабый поток когерентных фотонов, то его интенсивность станет расти. В начале 50-х гг. российские исследователи Николай Геннадьевич Басов, Александр Михайлович Прохоров и независимо от них американский физик Чарлз Хард Таунс создали усилитель радиоволн высокой частоты на молекулах аммиака. Нужные для работы возбуждённые молекулы отбирало из потока газа электрическое поле сложной конфигурации. Новорождённое устройство получило название мазер.
В 1960 году американский физик Теодор Гарольд Мейман сконструировал первый квантовый генератор оптического диапазона лазер. Усиление света происходило в кристалле рубина прозрачной разновидности окиси алюминия с небольшой примесью хрома (на этот материал указали третья годами раньше Н.Г Басов и А.М. Прохоров). В лазере использовался охлаждаемый жидким азотом рубиновый стержень длиной около 4 см и диаметром 5 мм. Посеребренные торцы стержня служили зеркалами, одно из которых было полупрозрачным. Энергию в кристалл накачивала мощная импульсная лампа. Поток фотонов высокой энергии переводил атомы хрома в возбужденное состояние. На одном из высокоэнергетических уровней атомы задерживаются в среднем на 0,003 с время по атомным масштабам огромное. За этот период часть атомов успевает самопроизвольно излучить фотоны. Их поток, многократно пробегая между зеркалами, заставляет все возбужденные атомы излучать кванты света. В результате рождается световая вспышка - лазерный импульс мощностью в десятки тысяч ватт. Сегодня лазерные стержни изготовляют из различных материалов, но чаще всего из рубина, граната и стекла с примесью редкого металла - неодима Некоторые твердотельные лазеры (например, на гранате) генерируют сотни и тысячи импульсов в секунду. 4
И в том же 1960 году американские физики А Джэван, В Бепнет и Д. Эрриот создали газовый лазер, работающий на смеси гелия и неона. Этот лазер излучал красный свет уже не импульсами, а непрерывно. Смесь газов оказалась настолько хорошо подобранной, что гелиево-неоновые лазеры до сих пор остаются самыми распространёнными источниками когерентного света, хотя излучения удалось добиться и от множества других газов и паров. Энергию в газовую смесь накачивает тлеющий электрический разряд. Цвет луча зависит от состава газа или пара, на котором лазер работает. Аргон, например, даёт синий свет, криптон - жёлтый, ксенон и пары меди зелёный. углекислый газ и пары воды невидимые тестовые (инфракрасные) лучи.
В семейство газовых лазеров можно отнести и квантовые генераторы, в которых возбужденные молекулы не готовятся заранее, а появляются непосредственно в момент излучения. Это так называемые газодинамические и химические лазеры, развивающие колоссальную мощность в сотни киловатт и даже десятки мегаватт в непрерывном режиме.
Газодинамический лазер напоминает реактивный двигатель. Молекулы сильно нагретого газа, вылетающие из него, отдают энергию в виде светового излучения. В химическом лазере возбуждённые молекулы возникают в результате химической реакции. Самая энергичная из них - соединение атомарного фтора с водородом.
Непрерывное излучение дают и жидкостные лазеры. Рабочим веществом для них служат, например, растворы солей неодима и соединений анилина. Поскольку соединения анилина используются для окраски тканей, генераторы на их основе называют лазерами на красителях. Для более стабильной работы лазера жидкость можно пропускать через холодильник.
Самые миниатюрные лазеры - полупроводниковые: в спичечный коробок их можно поместить несколько десятков, а объём вещества, в котором происходит вынужденное излучение, не превышает тысячных долей кубического миллиметра. Энергию в полупроводник накачивает электрический ток. Больше половины его «превращается» в свет, т. е. коэффициент полезного действия этих лазеров может достигать более чем 50 %.

2.2 Типы лазеров

1) Твердотельные лазеры.
Первой твердой активной средой стал рубин – кристалл корунда Al2O3 с небольшой примесью ионов хрома Cr +++ . Сконструировал его Т. Мейман (США) в 1960. Широко применяется также стекло с примесью неодима Nd, алюмоиттриевый гранат Y 2 Al 5 O 12 с примесью хрома, неодима и редкоземельных элементов в виде стержней. Накачкой твердотельных лазеров обычно служит импульсная лампа, вспыхивающая примерно на 10–3 секунды, а лазерный импульс оказывается раза в два короче. Часть времени тратится на создание инверсной заселенности, а в конце вспышки интенсивность света становится недостаточной для возбуждения атомов и генерация прекратится. Лазерный импульс имеет сложную структуру, он состоит из множества отдельных пиков длительностью порядка 10–6 секунды, разделенных промежутками, примерно, в 10–5 секунды. В этом режиме так называемой свободной генерации мощность импульса может достигать десятков киловатт. Повысить мощность, просто усиливая свет накачки и увеличивая размеры лазерного стержня, невозможно чисто технически. Поэтому мощность лазерных импульсов повышают, уменьшая их длительность. Для этого перед одним из зеркал резонатора ставят затвор, который не позволяет генерации начаться, пока на верхний уровень не будут переброшены практически все атомы активного вещества. Затем затвор на короткое время открывается и вся накопленная энергия высвечивается в виде так называемого гигантского импульса. В зависимости от запаса энергии и длительности вспышки мощность импульса может составлять от нескольких мегаватт до десятков тераватт (1012 ватт). 5
2) Газовые лазеры.
Активной средой газовых лазеров служат газы низкого давления (от сотых долей до нескольких миллиметров ртутного столба) или их смеси, заполняющие стеклянную трубку с впаянными электродами. Первый газовый лазер на смеси гелия и неона был создан вскоре после лазера рубинового в 1960 А. Джаваном, В. Беннетом и Д. Эрриотом (США). Накачкой газовых лазеров служит электрический разряд, питаемый высокочастотным генератором. Генерация излучения ими происходит так же, как и в твердотельных лазерах, но газовые лазеры дают, как правило, непрерывное излучение. Поскольку плотность газов очень мала, длина трубки с активной средой должна быть достаточно велика, чтобы массы активного вещества хватило для получения высокой интенсивности излучения.
К газовым лазерам можно отнести также лазеры газодинамические, химические и эксимерные (лазеры, работающие на электронных переходах молекул, существующих только в возбужденном состоянии).
Газодинамический лазер похож на реактивный двигатель, в котором сгорает топливо с добавкой молекул газов активной среды. В камере сгорания молекулы газов возбуждаются, и, охлаждаясь при сверхзвуковом течении, отдают энергию в виде когерентного излучения большой мощности в инфракрасной области, которое выходит поперек газового потока.
3) Химические лазеры.
В химических лазерах (вариант газодинамического лазера) инверсия заселенности образуется за счет химических реакций. Наиболее высокую мощность развивают лазеры на реакции атомарного фтора с водородом.
4) Жидкостные лазеры.
Активной средой этих лазеров (их называют также лазерами на красителях) служат различные органические соединения в виде растворов. Первые лазеры на красителях появились в конце 60-х. Плотность их рабочего вещества занимает промежуточное место между твердым телом и газом, поэтому они генерируют довольно мощное излучение (до 20 Вт) при небольших размерах кюветы с активным веществом. Работают они как в импульсном, так и в непрерывном режиме, их накачку осуществляют импульсными лампами и лазерами. Возбужденные уровни молекул красителей имеют большую ширину, поэтому жидкостные лазеры излучают сразу несколько частот. А меняя кюветы с растворами красителей, излучение лазера можно перестраивать в очень широком диапазоне. Плавную подстройку частоты излучения осуществляют настройкой резонатора.
5) Полупроводниковые лазеры.
Этот вид оптических квантовых генераторов был создан в 1962 одновременно несколькими группами американских исследователей (Р.Холлом, М.И. Нейтеном, Т. Квистом и др.), хотя теоретическое обоснование его работы сделал Н.Г.Басов с сотрудниками в 1958. Наиболее распространенные лазерный полупроводниковый материал – арсенид галлия GaAr. 6
В соответствии с законами квантовой механики электроны в твердом теле занимают широкие энергетические полосы, состоящие из множества непрерывно расположенных уровней. Нижняя полоса, называемая валентной зоной, отделена от верхней зоны (зоны проводимости) так называемой запрещенной зоной, в которой энергетические уровни отсутствуют. В полупроводнике электронов проводимости мало, подвижность их ограничена, но под действием теплового движения отдельные электроны могут перескакивать из валентной зоны в зону проводимости, оставляя в ней пустое место – «дырку». И если электрон с энергией Eэ спонтанно возвращается обратно в зону проводимости, происходит его «рекомбинация» с дыркой, имеющей энергию Eд, которая сопровождается излучением из запрещенной зоны фотона частотой n = Eэ – Eд. Накачка полупроводникового лазера осуществляется постоянным электрическим током (при этом от 50 до почти 100% его энергии превращается в излучение); резонатором обычно служат полированные грани кристалла полупроводника.
6) Лазеры в природе.
Во Вселенной обнаружены лазеры естественного происхождения. Инверсная заселенность возникает в огромных межзвездных облаках конденсированных газов. Накачкой служат космические излучения, свет близких звезд и пр. Из-за гигантской протяженности активной среды (газовых облаков) – сотни миллионов километров – такие астрофизические лазеры не нуждаются в резонаторах: вынужденное электромагнитное излучение в диапазоне длин волн от нескольких сантиметров (Крабовидная туманность) до микрона (окрестности звезды Эта Карина) возникает в них при однократном проходе волны.

2.3 Свойства лазерного излучения

В отличие от обычных, тепловых источников излучения лазер дает свет, обладающий целым рядом особых и очень ценных свойств. 7
1. Лазерное излучение когерентно и практически монохроматично. До появления лазеров этим свойством обладали только радиоволны, излучаемые хорошо стабилизированным передатчиком. Из-за того, что вынужденное излучение распространяется строго вдоль оси резонатора, лазерный луч расширяется слабо: его расходимость составляет несколько угловых секунд.
Эти перечисленные качества позволяют фокусировать лазерный луч в пятно чрезвычайно малого размера, получая в точке фокуса огромную плотность энергии.
2. Лазерное излучение большой мощности имеет огромную температуру. Так, например, импульсный лазер мощностью порядка петаватта (1015 Вт) имеет температуру излучения около 100 миллионов градусов.
Эти уникальные свойства лазерного излучения сделали квантовые генераторы незаменимым инструментом в самых разных областях науки и техники.
1. Технологические лазеры. Мощные лазеры непрерывного действия применяются для резки, сварки и пайки деталей из различных материалов. Высокая температура излучения позволяет сваривать материалы, которые иными методами соединить нельзя (например, металл с керамикой). Высокая монохроматичность излучения позволяет сфокусировать луч в точку диаметром порядка микрона и применять его для изготовления микросхем (так называемый метод лазерного скрайбирования – снятия тонкого слоя). Для обработки деталей в вакууме или в атмосфере инертного газа лазерный луч можно вводить в технологическую камеру через прозрачное окно.
2. Лазерная связь. Появление лазеров произвело переворот в технике связи и записи информации. Существует простая закономерность: чем выше несущая частота (меньше длина волны) канала связи, тем больше его пропускная способность. Именно поэтому радиосвязь, вначале освоившая диапазон длинных волн, постепенно переходила на все более короткие длины волн. Но свет – такая же электромагнитная волна, как и радиоволны, только в десятки тысяч раз короче, поэтому по лазерному лучу можно передать в десятки тысяч раз больше информации, чем по высокочастотному радиоканалу. Лазерная связь осуществляется по оптическому волокну – тонким стеклянным нитям, свет в которых за счет полного внутреннего отражения распространяется практически без потерь на многие сотни километров. Лазерным лучом записывают и воспроизводят изображение (в том числе движущееся) и звук на компакт-дисках.
3. Лазеры в медицине. Лазерная техника широко применяется и в хирургии, и в терапии. Лазерным лучом, введенным через глазной зрачок, «приваривают» отслоившуюся сетчатку и исправляют дефекты глазного дна. Хирургические операции, производимые «лазерным скальпелем» меньше травмируют живые ткани. А лазерное излучение малой мощности ускоряет заживление ран и оказывает воздействие, аналогичное иглоукалыванию, практикуемому восточной медициной (лазерная акупунктура).
4. Лазеры в научных исследованиях. Чрезвычайно высокая температура излучения и высокая плотность его энергии дает возможность исследовать вещество в экстремальном состоянии, существующем только в недрах горячих звезд. Делаются попытки осуществить термоядерную реакцию, сжимая ампулу со смесью дейтерия с тритием системой лазерных лучей (т.н. инерционный термоядерный синтез). В генной инженерии и нанотехнологии (технологии, имеющей дело с объектами с характерными размерами 10–9 м) лазерными лучами разрезают, передвигают и соединяют фрагменты генов, биологических молекул и детали размером порядка миллионной доли миллиметра (10–9 м). Лазерные локаторы (лидары) применяются для исследования атмосферы.
5. Военные лазеры. Военное применение лазеров включает как их использование для обнаружения целей и связи, так и применение в качестве оружия. Лучами мощных химических и эксимерных лазеров наземного или орбитального базирования планируется разрушать или выводить из строя боевые спутники и самолеты противника. Созданы образцы лазерных пистолетов для вооружения экипажей орбитальных станций военного назначения.

3. Механизмы вредного воздействие лазерного излучения

Ткани и органы, которые обычно подвержены лазерному облучению это глаза и кожа. Существуют три основных типа повреждения тканей, вызванных лазерным облучением. Это тепловые эффекты, фотохимическое воздействие, а также акустические переходные эффекты (подвержены только глаза). Тепловые эффекты могут возникать при любой длине волны и являются следствием излучения или светового воздействия на охлаждающий потенциал кровотока тканей.
В воздухе, фотохимический эффекты происходят между 200 и 400 нм и ультрафиолете, а также между 400 до 470 нм фиолетовых длинах волн. Фотохимические эффекты связанны с продолжительностью и также частотой повторения излучения.
Акустические переходные эффекты, связанные с длительностью импульса, могут произойти в короткий срок импульсов (до 1 мс) в зависимости от конкретной длины волны лазера. Акустическое воздействие переходных эффектов плохо изучено, но оно может вызвать повреждение сетчатки, которая отлична от термической травмы сетчатки.
Потенциальные места повреждения глаза напрямую связаны с длиной волны лазерного излучения. Длины волн короче 300 нм или более 1400 нм, воздействуют на роговицу. Длины волн между 300 и 400 нм, воздействуют на водянистую влагу, радужную оболочку глаза, хрусталик и стекловидное тело. Длины волн от 400 нм и 1400 нм, направлены на сетчатку. 8
Вред лазера для сетчатки может быть очень большим из-за фокусного усиления (оптического усиления) от глаз, что составляет примерно 105. Это означает, что излучение от 1 мВт/см 2 через глаз будет эффективно увеличено до 100 мВт/см2, когда оно достигает сетчатки.
При термических ожогах глаза нарушается охлаждающая функция сосудов сетчатки глаза. В результате повреждающего воздействия термического фактора могут происходить кровоизлияния в стекловидное тело в следствии повреждения кровеносных сосудов.
Так как сетчатка может восстановиться от незначительных повреждений, основные ранения жёлтого пятна сетчатки может привести к временной или постоянной потере остроты зрения или к полной слепоте. Фотохимические ранения роговицы путем ультрафиолетового облучения может привести к photokeratoconjunctivitis (часто называют болезнью сварщиков или снежной слепотой). Это болезненные состояния могут длиться несколько дней с очень изнуряющими болями. Долгосрочное облучение может привести к формированию катаракты.
Общая продолжительность воздействия также влияет на травматизацию глаза. Например, если лазер видимых длин волн (400 до 700 нм), мощность луча которого составляет менее 1,0 МВт, а время экспозиции составляет менее 0,25 секунд (время за которое человек закроет глаз), никаких повреждений на сетчатке глаза не будет. Класс 1, 2А и 2-лазеров подпадают под эту категорию и, как правило, не могут навредить сетчатке. К сожалению, при прямом или отраженном попадании лазера класса 3A, 3B, или 4, и диффузных отражений лазеров выше 4 класса могут вызывать повреждения, прежде чем человек сможет рефлекторно закрыть глаза.
Для импульсных лазеров, длительности импульса также влияет на потенциальный вред для глаз. Импульсы менее чем на 1 мс при попадании на сетчатку может вызвать акустические переходные эффекты, что приводит к существенному ущербу и кровотечениям в дополнение к ожидаемым тепловым повреждениям. Многие импульсные лазеров в настоящее время имеют время импульса менее 1 пикосекунды.
Стандарт ANSI определяет максимально допустимую мощность воздействия лазера на глаз без каких либо последствий (под воздействием конкретных условий).
Травмы кожи от лазеров в первую очередь, делятся на две категории: тепловые травмы (ожоги) от острого воздействия мощных лазерных лучей и фотохимического индуцированного повреждения от хронического воздействия рассеянного ультрафиолетового лазерного излучения. Тепловой травмы могут возникнуть в результате прямого контакта с лучом или его зеркальным отражением. Эти травмы хоть и болезненны но, как правило, не являются серьезными и, обычно, легко предотвращаются при надлежащем контроле над лазерным лучом. Фотохимические повреждения могут произойти с течением времени от облучения прямого света, зеркальных отражений, или даже диффузного отражения. Эффект может быть незначительными но могут быть и серьезные ожоги, а длительное воздействие может способствовать формированию рака кожи. Хорошие защитные очки и одежда могут быть необходимы для защиты кожи и глаз. При работе с лазерами необходимо иметь очки, защищающие от лазерного излучения. Защитные очки нужны даже для лазера 15мВт, так как без них глаза сильно устают.
Степень защиты очков от лазерного излучение измеряется в OD (Optical Density). Оптическая плотность показывает, во сколько раз очки ослабляют свет. Единица означает «в 10 раз». Соответственно, «оптическая плотность 3» означает ослабление в 1000 раз, а 6 - в миллион. Правильная оптическая плотность для видимого лазера такова, чтобы после очков от прямого попадания лазера осталась мощность, соответствующая классу II (максимум где-то 1 мВт).
От красного и некоторых инфракрасных лазеров защищают отечественные очки марки ЗН-22 С3-С22. Они похожи на очки сварщика, но имеют стекла голубого цвета. В связи с широким применением лазерных источников излучения в научных исследованиях, промышленности, медицинский связи и др. возникает необходимость сохранения здоровья людей эксплуатирующих различные лазерные установки. 9
Лазер - источник когерентного излучения, то есть согласованного во времени и пространстве движения фотонов в виде выделенного луча. Характер воздействия на зрительный аппарат и степень поражающего действия лазера зависят от плотности энергии излучения, длины волны излучения (импульсное или непрерывное). Характер повреждения кожи зависит от цвета кожи, например пигментированная кожа значительно сильнее поглощает лазерное излучение, чем не пигментированная. Светлая кожа отражает до 40 % падающего на нее излучения. При действии лазерного излучения обнаружен ряд нежелательных изменений со стороны органов дыхания, пищеварения, сердечнососудистой и эндокринной систем. В некоторых случаях эти общие клинические симптомы носят довольно стойкий характер, являясь результатом влияния на нервную систему.
Охарактеризуем действие наиболее биологически опасных спектральных диапазонов лазерного облучения. В инфракрасной области энергия наиболее «коротких» волн (0,7-1,3 мкм) может проникать на сравнительно большую глубину в кожу и прозрачные среды глаза. Глубина проникновения зависит от длины волны падающего излучения. Участок высокой прозрачности на длинах волн от 0,75 до 1,3 мкм имеет максимум прозрачности в районе 1,1 мкм. На этой длине волны 20 % энергии, падающей на поверхностный слой кожи, проникает в кожу на глубину до 5 мм. При этом в сильно пигментированной коже глубина проникновения может быть еще больше. И, тем не менее, кожа человека достаточно хорошо противодействует инфракрасному излучению, так как она способна рассеивать тепло благодаря кровообращению и понижать температуру ткани вследствие испарения влаги с поверхности.
Но значительно труднее от инфракрасного облучения защитить глаза, в них тепло практически не рассеивается, и хрусталик, фокусирующий излучение на сетчатке, усиливает эффект биологического воздействия. Все это заставляет при работе с лазерами особое внимание обращать на защиту глаз. Роговая оболочка глаза прозрачна для излучения в интервале длин волн 0,75-1,3 мкм и становится практически непрозрачной только для длин волн более 2 мкм.
Степень теплового поражения роговицы зависит от поглощенной дозы облучения, причем травмируется главным образом поверхностный, тонкий слой. Если в интервале волн 1,2-1,7 мкм величина энергии облучения превышает минимальную дозу облучения, то может произойти полное разрушение защитного эпителиального слоя. Ясно, что подобное перерождение тканей в области, положенной непосредственно за зрачком, серьезно сказывается на состоянии органа зрения.
Следует иметь в виду, что радужная оболочка, отличающаяся высокой степенью пигментации, поглощает излучение практически всего инфракрасного диапазона. Особенно сильно подвержена она действию излучения длиной волны 0,8-1,3 мкм, поскольку излучение почти не задерживается роговицей и водянистой жидкостью передней камеры глаза.
Минимальной величиной плотности энергии облучения в интервале волн 0,8-1,1 мкм, способной вызвать поражение радужной оболочки, считают 4,2 Дж/см 2 . Одновременное поражение роговой и радужной оболочек всегда носит острый характер, а поэтому оно наиболее опасно. 10
Поглощение средами глаза энергии излучения в инфракрасной области, падающей на роговую оболочку, растет с увеличением длины волны. При длинах волн 1,4-1,9 мкм роговица и передняя камера глаза поглощают практически все падающее излучение, а при длинах волн выше 1,9 мкм роговица становится единственным поглотителем энергии излучения.
При оценке допустимых уровней лазерной энергии необходимо учитывать суммарный эффект, производимый на прозрачные среды глаза, сетчатку и сосудистую оболочку. Оценим действие лазерного излучения на сетчатую оболочку глаза.
Прогнозируя возможность опасности лазерного облучения, необходимо учитывать:
и т.д.................

error: