Напряжение в сети меньше 220 претензия. Причины низкого напряжения в сети

Причины понижения напряжения в сети могут быть различные. В этой статье мы остановимся на основных причинах, приводящих к низкому напряжению.

Основные причины снижения напряжения в сети

Всегда ли в нашей сети - 220? Вопрос, конечно, риторический, очень часто напряжение в сети не соответствует нормативам и является пониженным или повышенным.
Приводим список основных причин низкого напряжения:

  • низкое напряжение в линии ЛЭП
  • недостаточная мощность трансформатора, установленного на подстанции
  • перекос напряжения по фазам на линии от трансформатора до дома
  • проблемы в распределительном щитке, малое сечение проводов в разводке.

Подробнее о причинах низкого напряжения и методах решения данной проблемы

Падение напряжения в линии ЛЭП

Одной из глобальных причин понижения напряжения является недостаточная мощность электрогенерации и электротрансформации в регионе. Недостаточное финансирование электрической отрасли с одной стороны и бурный рост потребления электроэнергии в последние годы с другой стороны приводит к проблемам с качеством электроснабжения.
Повлиять на решение данной проблемы мы практически не можем, единственное решение в этой ситуации - покупка и установка повышающего стабилизатора напряжения.

Низкая мощность распределительного трансформатора или неправильная его настройка

Часто бывает так. К одному трансформатору было подключено определенное количество потребителей и проблем с качеством электроэнергии не было. Потом к этому же трансформатору или подстанции подключаются еще новые дома, и мощность его оказывается недостаточной, это приводит к понижению напряжения во всей подключенной сети. Такое явление часто наблюдается в дачных поселках, и напряжение в 180, 170, 160 и даже 150 Вольт там не редкость.
Какие есть методы решения?. Наиболее правильный - замена трансформатора на более мощный. Но для этого нужно иметь общее решение всех потребителей и финансовые возможности. Индивидуально решить проблему в этом случае можно путем установки повышающих стабилизаторов напряжения на весь дом или нужную группу приборов.

Перекос фаз в распределительной сети, вызывающий снижение напряжения, и методы решения

Причиной снижения напряжения на входе в дом может быть неравномерное распределение потребителей в распределительной сети или «перекос фаз». Как правило, такое явление наблюдается в сельской местности, в дачных поселках и частном секторе. Дома в таких сетях подключаются к электросети по мере строительства новых объектов индивидуально. Часто при этом подключение идет по принципу «так удобно монтеру» или «этот провод ближе». В результате на одной «фазе» или одном «плече» сети потребителей оказывается больше, чем на других. Напряжение в этой части электросети будет ниже.
Исправить ситуацию путем повышения значения напряжения на питающем трансформаторе не получится, так как этот приведет к повышенному (или опасно высокому) значению напряжения на других участках этой электросети. Правильное решение - устранить неравномерность распределения потребителей, переключится на питание от другой фазы сети. Но часто это бывает не возможно физически. Второй вариант решения проблемы - установка стабилизатора напряжения на входе в дом.

Проблемы в домашней сети, приводящие к понижению напряжения и методы их устранения

Первое, что нужно сделать, если у Вас низкое напряжение в розетке, - это выяснить является ли проблема внутренней или внешней.
Первое. Самое простое - узнать, есть ли проблемы с электропитанием у соседей. Второе. Отключить автоматы в распределительном щите и измерить напряжение на входе в доме. Если напряжение низкое - то проблема во внешней сети. Если напряжение на входе в дом нормальное, то проблема в доме.
Приводим список частых проблем в электросети дома или квартиры:

  • снижение напряжения может быть вызвано плохими контактами на входе в распределительный щит или плохими контактами в самом распределительном щите;
  • снижение напряжения может быть вызвано плохими контактами в комнатных распределительных коробах и на самих розетках;
  • снижение напряжения может быть вызвано неправильным выбором сечения провода в разводке.

Если выявить точную причину самостоятельно не получилось, следует обратиться за помощью к профессиональному электрику.

Как поднять напряжение с помощью стабилизаторов

Существует два основных способа решить проблему низкого напряжения.
Первый способ - установка большого мощного стабилизатора на входе в дом. Такой стабилизатор должен иметь большую мощность, большой диапазон входного напряжения и высокую надежность. Мы рекомендуем стабилизаторы напряжения SKAT ST мощность от 3,5 кВт до 12 кВт.
На следующем видео представлены возможности стабилизатора SKAT ST-12345.

Второй способ - установка локальных стабилизаторов для питания отдельных электроприборов. Такие стабилизаторы должны иметь достаточную мощность, большой диапазон входного напряжения, компактный размер и высокую надежность. Мы рекомендуем стабилизаторы напряжения SKAT ST мощность от 1,5 кВт до 3 кВт.
На следующем видео представлены возможности стабилизатора SKAT ST-2525.

Выводы: для решения проблемы низкого напряжения в доме необходимо установить причины этого явления, попытаться устранить проблемы в сети, использовать стабилизаторы напряжения.

Давайте разберемся почему падает напряжение в сети. Вы наверное ни раз обращали внимание когда тускнеет свет, особенно ламп накалывания или электрический чайник закипает дольше обычного. Это вызвано пониженным напряжением сети. Обычно говорят, что кто-то из соседей включил мощную нагрузку, например сварочный аппарат. Чтобы лучше понять сущность этого явления рассмотрим схему (рис. 1) с источником питания U ип = 9 В к клеммам 1-2 которого подключен регулируемый резистор (потенциометр), сопротивление которого установлено 10 Ом .

Рис. 1 – Схема, поясняющая работу идеального источника напряжения

Ток нагрузки Iн, который протекает через резистор Rн определяется по закону Ома и равен


Посмотрим еще раз внимательно на схему (рис. 1) Как бы не изменялось сопротивление нагрузки R н напряжение на клеммах 1-2 , к которым подключена нагрузка всегда будет равно напряжению источника питания U 12 = U ип . Изменятся будет только ток нагрузки I н пропорционально изменению сопротивления нагрузки R н . Таким образом сопротивление на нагрузке не зависит от величины самой нагрузки, а сам источник питания является идеальным источником напряжения. Если бы в природе существовали такие источники, то напряжение никогда бы не просаживалось, даже при коротком замыкании цепи.

Теперь рассмотрим процессы в реальном источнике напряжения. Реальный источник напряжения отличается от идеального наличием внутреннего сопротивления R вн (рис. 2) .


Рис. 2 – Обозначение реального и идеального источников напряжения


Рис. 3 – Схема с реальным источником напряжения

Величина внутреннего сопротивления источника напряжения имеет малое значение и на практике часто пренебрегается. Чем меньше внутреннее сопротивление, тем больше реальный источник по своим свойствам приближен к идеальному.

Следует заметить, что на холостом ходу напряжение на зажимах U 12 всегда равно напряжению источника питания U ип независимо от величины внутреннего сопротивления R вн (рис. 4) . Это поясняется тем, что при разомкнутой цепи ток в ней не протекает и следовательно отсутствует падение напряжения на внутреннем сопротивлении.


Рис. 4 – Схема реального источника питания на холостом ходу

Теперь подключим нагрузку к клеммам 1-2 (рис. 5) и посмотрим как изменится на них напряжение.

Величину внутреннего сопротивления принимаем равной 1 Ом , а сопротивление нагрузки 10 Ом (рис. 5) .


Рис. 5 – Схема с реальным источником питания и нагрузкой 10 Ом

Определим ток нагрузки по закону Ома


Rвн равно

Теперь найдем напряжение на нагрузке, т. е. на клеммах 1-2 U12. Оно определяется по II закону Кирхгофа:

Как видно, с подключением нагрузки, равной 10 Ом , напряжение просаживается на 0,8 В (рис. 6) .


Рис. 6 – Схема распределения падений напряжения на нагрузке

Теперь увеличиваем нагрузку, так, чтобы сопротивление ее равнялось внутреннему сопротивлению источника питания R н = R вн = 1 Ом (рис. 7) .


Рис. 7 – Схема с реальным источником питания и нагрузкой 1 Ом

равен


Падение напряжения на внутреннем сопротивлении равно:

Напряжение на нагрузке, оно же на клеммах 1-2 равно

Т. е. напряжение просело в 2 раза (рис. 8) !


Рис. 8 – Схема распределения падений напряжения на нагрузке

Отсюда можно сделать следующий вывод: с увеличением нагрузки повышается падение напряжения на внутреннем сопротивлении источника напряжения, в результате этого снижается напряжение на нагрузке.

Почему падает напряжение в сети 220 В, 50 Гц

Аналогичные процессы протекают и в сети 220 В, 50 Гц. Только первичным источником напряжения служит не розетка, а подстанция, т. е. трансформатор, а вы и ваши соседи питаетесь параллельно от его вторичных обмоток (рис. 9) .


Рис. 9 – Упрощенная схема питания потребителей напряжение промышленной частоты

Поэтому если вы увеличите нагрузку, то напряжение упадет не только у вас, но и у ваших соседей. Либо когда сосед подключит нагрузку большой мощности, напряжение просядет как у него, так и у вас.

Чтобы убедится в сказано выше можно проделать небольшой опыт, для которого понадобится источник питания (любая батарейка либо крона), вольтметр (мультиметр) и несколько сопротивлений различного номинала.

Вначале измерим напряжение кроны на холостом ходу (рис. 10) . Как видна из рисунка оно равно 8,50 В (крона уже немного севшая).


Теперь подсоединим к кроне резистор сопротивлением 10 кОм (рис. 11) . Как видно, напряжение источника питания уже немного «просело» и равно 8,12 В .



Чем сильнее разряжена батарейка, тем больше будет просаживаться напряжение при подключении одной и той же нагрузки.

Как мы увидели, практика полностью совпадает с теорией. Такие простые опыты дают глубокие понимания базовых процессов, протекающих как в электрике, так и в электронике, что позволит в дальнейшем с большей легкость освоить более сложный материал. Теперь Вы понимаете почему падает напряжение в сети.

Перейти на страницу.

Довольно часто для россиян головной болью становиться несоответствие качества электроснабжения в бытовой сети, в основном это выражается в значительном понижении напряжения от нормативных значений. В данной статье будут описано почему падает напряжение, причины появления отклонения значений основных характеристик электропитания, негативное воздействие на электроприборы и приведен ряд возможных примеров решения проблемных вопросов с питающем напряжением.

Почему появляется падение напряжения.

Качество электропитания прописаны в ГОСТ Р 54149-2010 «Нормы качества электрической энергии в системах электроснабжения общего назначения» в котором прописано, что изменение напряжения может находиться в пределах ± 10% от номинального (или согласно договорным условиям) в течение 100% времени интервала измерения в одну неделю. В реальной жизни сплошь и рядом данный стандарт нарушается. Значение входящего в дом или квартиру напряжения может иметь до 50% понижения. В основном это наблюдается в зависимости от сезона, но в отдельных районах может быть и постоянным явлением.

От чего же может падать напряжение:

  • трансформаторная подстанция. По всей территории России установлены трансформаторные подстанции, подавляющее большинство из них ставились еще во времена СССР, при этом расчет нагрузки на них велся совсем по другим электроприборам и их количеству. Не маловажную роль играет и возраст работающих трансформаторов, который неблагоприятно влияет на качество электропитания. Но стоит заметить, что инженеры того времени закладывали значительный запас прочности, как по мощности, так и по механической прочности.
  • линии электропередач. Ситуация аналогична с трансформаторными подстанциями. Диаметр жил и материал кабеля (алюминий ) часто не могут выдержать возросшее потребление электроэнергии, а многочисленные скрутки с течением времени стали приносит свои потери в качестве. В настоящий момент алюминиевый кабель заменяется на более приспособленный к нагрузкам медный.
  • разница потребляемой мощности на фазах. Как известно, имеется три фазы в системе электропитания. В основной массе в квартиру или частный дом подключают одну из фаз. Если на одной фазе будет значительное превышение по нагрузке относительно двух других, то возникает такое явление как перекос фаз, которое провоцирует повышение или понижение напряжения.

Все написанное выше может присутствовать как отдельно, так в комплексе. Даже если отремонтировать или заменить одну из составляющих, то ситуация может улучшиться лишь частично. В сетях электроснабжение есть еще один нюанс: в конце линии от трансформаторной подстанции электропотребители работают в более тяжелых условиях, чем потребители находящиеся ближе к ТП (Они могут потребить больше мощности и при этом качество электропитания будет лучше.

К чему ведет низкое напряжение в сети.

  • — значительное ухудшение условий пуска всех типов двигателей и устройств на базе двигателя;
  • — при запуске электродвигателя увеличивается пусковой ток;
  • — перегрев проводов вплоть до оплавления изоляции и вероятность возгорания от короткого замыкания;
  • — уменьшения яркости свечения ламп или их постоянное моргание, что приводит к дискомфорту проживания в доме;
  • — уменьшение срока службы бытовых электроприборов;
  • — нестабильная работа чувствительной к электропитанию приборов;
  • — значительное ухудшение характеристик работы электроприборов.

Все это вместе приносит значительные повреждения всем бытовым приборам в доме. Телевизоры, компьютеры, светильники, кондиционеры, пылесосы, холодильники и другие потребители электроэнергии получают большие повреждения не только при пуске, но и в процессе штатной работы. Немного меньше страдают приборы с импульсным блоком питания, но и в них наблюдается неправильная работа и отклонения в режимах. В конечном счете все это влияет и на человека: нагревательные приборы затрачивают больше времени на нагрев, электроприборы с двигателем работают с большим шумом, компрессор холодильника может не запуститься (т .е. продукты разморозятся), освещение становиться более тусклым, что может повлиять на психическое и физиологическое состояние человека или, как минимум, ухудшить комфорт проживания в помещении.

Способы борьбы с некачественным напряжением.

  1. 1. Претензия в энергоснабжающую организацию. Перед тем как подать претензию в энергоснабжающую организацию необходимо собрать доказательство поставки некачественной энергии. Это делается путем установки специального устройства регистрирующего все характеристики и параметры сети питания. Обязательным условием предъявляемые к данному устройству это наличие соответствующего сертификата. Данное устройство устанавливается непосредственно на входе питания в дом или квартиру. Запись происходит на карту памяти, потом записанные данные можно перенести на компьютер и распечатать для предъявления поставщику электроэнергии. Также очень важно правильно составить претензионное письмо, если нет необходимых знаний, то лучше обратиться за консультацией к юристу. В случае если на ваше письмо был получен отказ, вы имеете полное право обратиться с иском в судебный орган. Если некачественное электроснабжение наблюдается не только у вас, но и соседей, то можно подать коллективную претензию, что значительно ускорит решение проблемного вопроса с электричеством.
  2. 2. . Этот способ является наиболее быстрым и менее затратным по времени. Поэтому и наиболее популярен среди населения. Проблема качества энергоснабжения решается сразу же после установки на входе стабилизатора напряжения. Стабилизатор напряжения не только «доведет » питающее напряжение до нормативных 220 Вольт, но и надежно защитит домашние электроприборы от резких перепадов напряжения (скачков ) и от различного типа аварийных ситуаций в сети. Стабилизаторы напряжения Энергия обладают всеми необходимыми свойствами для использования их не только в быту, но и на производстве.
  3. 3. (источника бесперебойного питания). Решение является более дороже, чем установка стабилизатора напряжения, но в данном случае есть одно большое преимущество. Инвертор не только стабилизируют некачественное напряжение, но и при полном отсутствии питающего напряжения обеспечит резервное питание от аккумуляторов. В зависимости от модели, емкости аккумуляторов и подключенной нагрузки может резервировать питание от 15 минут до 2-х суток. Устанавливается инвертор либо на вводе в дом, либо индивидуально на важное электрооборудование, например, котел отопления, холодильник, систему пожарной или охранной сигнализации. Инверторы Энергия имеют на выходе идеальную синусоиду, что очень важно для современной чувствительной аппаратуры.
  4. 4. Установка устройств альтернативной энергетики. Устанавливаются преимущественно в частных домах и коттеджах. В данном случае речь идет о солнечных батареях и ветрогенераторах. Основным плюсом данного способа является то, что энергия солнца и ветра бесплатна, финансовые траты происходят только на закупку и монтаж устанавливаемого оборудования. Технологии производство позволяют достичь срока службы данных систем не менее 30 лет. Главным недостатком систем альтернативной энергетики является их высокая стоимость, исчисляемая в зависимости от объема вырабатываемой энергии, десятки, а то сотни тысяч рублей. Но с учетом того, что стоимость электроэнергии с каждым годом увеличивается, то окупаемость подобных систем составляет не более 10 лет.
  5. 5. Собственная трансформаторная подстанция. Из всех перечисленных способов решения проблем с электричеством данный способ является самым дорогостоящим. Стоимость замены подстанции и линий передач исчисляется миллионами. Да и не везде есть возможность ее установки.

Ответ на вопрос почему падает напряжение у Вас дома и решение о необходимости установки стабилизатора напряжения лучше доверить профессиональному электрику. Ознакомиться с ценами на продукцию ЭТК Энергия можно в

Из-за чего происходит падение напряжения в электросети.

Статья предназначена для тех кто ничего не понимает в электричестве (аналогия с водопроводом).
Среди ученых уже давно есть мнение что в природе существует всего один закон, по которому все в этом мире взаимодействует, и с помощью которого можно описать все процессы - абсолютный закон природы. Но пока его еще не открыли, и к его пониманию подходят с разных сторон - химия, математика, физика со множеством направлений, и открыто масса законов и правил, которые являются всего лишь следствием абсолютного закона.
Множество людей пугает электричество, потому что они не знают и не понимают его.
Но почти все ежедневно пользуются водопроводом, и не считают это чем то сверхъестественным и страшным, так как понимают как он устроен и работает.
Исходя из всего вышесказанного мы можем провести параллель между электросетью и водопроводом, так как это разновидность одного и того же процесса, но описывается пока еще разными законами и правилами.

Начнем с приведения аналогий



На картинке представлена типичная электросеть поселка



И аналогичная ей водопроводная система

Итак, как видно из рисунков, все сети последовательного исполнения. И чем дальше от распределительной точки, тем меньше напряжения/давления доходит до потребителя. Так делается для существенной экономии кабелей/труб. Все сечения/диаметры рассчитаны с таким учетам, что бы ко всем потребителям приходило одинаковое напряжение/давление. И когда сеть новая, то так и происходит. Но со временем сети изнашиваются - трубы засоряются, появляются протечки, снимаются регуляторы давления; ухудшается проводимость проводов, появляются скрутки, перегрузка сети. И в конечном итоге получаем сильное падение напряжения/давления, такая ситуация и показана на рисунках.
На ТП начинают повышать напряжение. Чтобы последним потребителям дошло хоть что то. При этом у первых потребителей начинают выходить из строя электроприборы из-за высокого напряжения. В таких ситуациях может помочь только стабилизатор напряжения.
При высоком напряжении он сбрасывает лишнее в сеть, как редуктор. При пониженном напряжении стабилизатор выкачивает напряжение из сети как насос.
В современных многоэтажных домах, в каждой квартире устанавливается редуктор давления на 2 атм. Вследствие этого на первых этажах нет перерасхода воды и сильной потери давления в трубах и до последних этажей доходит нужное давление. Если здание более 11 этажей, то устанавливают дополнительно насосы повышающие давления для верхних этажей.
В старой или длинной электросети, также необходимо устанавливать стабилизаторы напряжения каждому потребителю для выравнивания дисбаланса в сети. Но этим занимаются уже сами потребители.

Почему происходит падение давления в трубах:

1. Трубы засоряются, на стенках появляется нарост, соответственно уменьшая диаметр трубы. При отключении и включении воды наросты в трубах откалываются и скапливаются в изгибах, тем самым создавая сопротивление току воды.

2. Врезка труб большего диаметра чем рассчитано. Из-за этого происходит резкое падение давления во всей системе.

3. Включение всех кранов одновременно

Почему происходит падение напряжения в электросети:

1. Воздушные электросети прокладываются из алюминиевого провода без изоляции. С течением времени у алюминия, если по нему пропускают ток, ухудшаются проводимые свойства, разрушается кристаллическая решетка, увеличивается сопротивление.

2. Местные электрики, как правило, при соединении проводов используют обычную скрутку, а не болтовое крепление, что добавляет сопротивление току.

3. При перегрузке сети. Сечение проводов ограничивает ток который по ним можно пускать:

Медные жилы проводов и кабелей

Алюминиевые жилы проводов и кабелей

В случае превышения допустимого тока, провода начинают греться. При повышении температуры металла его сопротивление току увеличивается.
Расчет падения напряжения достаточно простой:


Закон Ома U = I * R

1. I = Uит/(R1+R2+R) = 8.15 А

2. U1 = I * R1 = 8,15 В

3. U2 = I * R2 = 8,15 В

4. U = I * R = 203 В

Как видим падение напряжения из-за скруток и сопротивления проводов, в данном случае составило 16,3 В. Сопротивление скруток зависит от их качества и количества. Сопротивление проводов зависит от температуры и его длины.

Удельное сопротивление меди при 20о - ρ = 0,018 Ом *мм 2 /м
Удельное сопротивление алюминия при 20о - 0,028 Ом *мм 2 /м

Получим сопротивление провода от ТП до потребителя. Сечение алюминиевого провода 16 мм 2 , расстояние 1 км.

Сопротивление провода R = 0,028 * 1000 / 16 = 1,75 Ом

С учетом того что на ТП выходное напряжение настраивают 240В - 260В, то даже если вы находитесь за 2 км от неё к вам доходит нормальное напряжение 220В, если все соединения проводов выполнены качественно. Но как только сеть перегружают сопротивление проводов резко увеличивается. Особенно это сильно заметно в дачных поселках, где стоят маломощные ТП, а потребителей огромное количество. Днем напряжение в сети может опускаться до 100В у конечных потребителей, а ночь подниматься до 260В.
Для приборов где есть электронные схемы такое напряжение губительно. Для современных электромоторов, насосов, компрессоров, холодильников такое напряжение так же не допустимо. С целью экономии материалов они выполняются рассчитанными на напряжение 220-230В ± 5%, без двойного запаса прочности, как раньше. И в условиях плохого напряжения они просто сгорают.
В особо плачевных ситуациях не поможет даже стабилизатор напряжения.



error: