Петлевая квантовая космология. Квантовая теория гравитации Теория струн vs петлевой квантовой теории гравитации

Восемьдесят лет прошло с тех пор, как физики поняли, что теории квантовой механики и гравитации несовместимы, и загадка их комбинирования остаётся неразрешённой. За последние десятилетия исследователи изучали эту задачу двумя разными путями – через и через квантовую гравитацию – которые практикующие их учёные считают несовместимыми. Но некоторые учёные доказывают, что для продвижения необходимо объединить усилия.

Два кандидата на «теорию всего», долгое время считавшиеся несовместимыми, могут оказаться двумя сторонами одной медали.

Среди попыток объединения квантовой теории и гравитации больше всего внимания привлекла . Её предпосылка проста: всё состоит из маленьких струн. Струны могут быть замкнуты или разомкнуты; они могут вибрировать, растягиваться, объединяться или распадаться. И в этом многообразии лежат объяснения всех наблюдаемых явлений, включая материю и пространство-время.

Петлевая квантовая гравитация (ПКГ), наоборот, придаёт меньше значения материи, присутствующей в пространстве-времени, и больше концентрируется на свойствах самого пространства-времени. В теории ПКГ пространство-время – это сеть. Плавный фон теории гравитации Эйнштейна заменяется узлами и звеньями, которым назначаются квантовые свойства. Таким образом, пространство состоит из отдельных кусочков. ПКГ в основном занимается изучением этих кусочков.

Этот подход долгое время считался несовместимым с теорией струн. В самом деле, их различия очевидны и глубоки. Для начала, ПКГ изучает кусочки пространства-времени, а теория струн исследует поведения объектов в пространстве-времени. Эти области разделяют и технические проблемы. Теории струн необходимо, чтобы в пространстве было 10 измерений; ПКГ в высших измерениях не работает. Теория струн предполагает наличие суперсимметрии, в которой у всех частиц есть пока не обнаруженные партнёры. Суперсимметрия не свойственна ПКГ.

Эти и другие различия разбили сообщество физиков-теоретиков на два лагеря.

«Конференции разделяются, - говорит Дордж Пуллин , физик из Университета штата Луизиана и соавтор учебника по ПКГ . – Петлевики ездят на петлевые конфы, струнники – на струнные. Они теперь даже не ездят на конференции по „физике“. Я думаю, что это весьма прискорбно».

Но некоторые факторы могут сдвинуть эти лагеря поближе. Новые теоретические открытия выявили возможные сходства между ПКГ и теорией струн. Новое поколение струнных теоретиков вышло за пределы струнной теории и начало поиски методов и инструментов, могущих оказаться полезными для создания «теории всего». И недавний парадокс с потерей информации в чёрных дырах заставил всех почувствовать себя скромнее.

Более того, в отсутствие экспериментальных подтверждений струнной теории или ПКГ, математическое доказательство того, что они являются двумя сторонами одной монеты, послужило бы доводом в пользу того, что физики в поисках «теории всего» движутся в верном направлении. Комбинация ПКГ и струнной теории сделала бы новую теорию единственной .

Неожиданная связь

Попытки решить некоторые проблемы ПКГ привели к первой неожиданной связи с теорией струн. У изучающих ПКГ физиков нет чёткого понимания того, как перейти от кусочков сети пространства-времени к крупномасштабному описанию пространства-времени, совпадающему с ОТО Эйнштейна – нашей лучшей теорией гравитации. Более того, их теория не может примириться с тем особым случаем, в котором гравитацией можно пренебречь. Это проблема, подстерегающая любую попытку использования пространства-времени по кусочкам: в СТО линейные размеры объекта уменьшаются в зависимости от движения наблюдателя относительно объекта. Сжатие также влияет и на размер кусочков пространства-времени, которые воспринимаются по-разному наблюдателями, движущимися на разных скоростях. Это расхождение приводит к проблемам с центральным принципом теории Эйнштейна – что законы физики не зависят от скорости наблюдателя.

«Сложно вводить дискретные структуры, не испытывая проблем с СТО»,– говорит Пуллин.

В своей работе, написанной в 2014 году с коллегой Рудольфо Гамбини, физиком из Республиканского университета Уругвая в Монтевидео, Пуллин пишет, что приведение ПКГ в соответствие с СТО неизбежно влечёт за собой появление взаимодействий, похожих на присутствующие в теории струн.

То, что у этих двух подходов есть что-то общее, казалось Пуллину вероятным со времён плодотворного открытия, сделанного в конце 1990-з Хуаном Малцаденой , физиком из Института перспективных исследований в Принстоне, штат Нью-Джерси. Малцадена в антидеситтеровском пространстве-времени (AdS) привёл в соответствие теорию гравитации и конформную теорию поля (CFT) на границе пространства-времени. Используя подход AdS/CFT, теорию гравитации можно описать при помощи более понятной теории поля.

Полная версия дуализма пока является гипотезой, но у неё есть хорошо разобранный ограничивающий случай, к которому не имеет отношения теория струн. Из-за того, что струны в этом случае не играют роли, его можно использовать в любой теории квантовой гравитации. Пуллину видится здесь точка соприкосновения.

ПКГ в представлении художника

Герман Верлинде , физик-теоретик из Принстонского университета, частенько работающий с теорией струн, считает правдоподобным то, что методы ПКГ могут пролить свет на гравитационную сторону дуализма. В недавней работе он описал упрощённую модель AdS/CFT в двух измерениях для пространства и одного для времени, или, как говорят физики, в случае «2+1». Он обнаружил, что пространство AdS можно описать при помощи таких сетей, что используются в ПКГ. Несмотря на то, что вся конструкция пока работает в «2+1», она предлагает новый взгляд на гравитацию. Верлинде надеется обобщить модель для большего количества измерений. «На ПКГ смотрели слишком узко. Мой подход включает и другие области. В интеллектуальном смысле это взгляд в будущее»,– сказал он.

Но даже если удастся скомбинировать методы ПКГ и струнной теории, чтобы продвинуться вперёд с пространством AdS, останется вопрос: насколько такая комбинация окажется полезной? У пространства AdS космологическая константа отрицательная (это число описывает геометрию Вселенной на больших масштабах), а у нашей Вселенной – положительная. Мы не живём в математической конструкции, описываемой пространством AdS.

Подход Верлинде прагматичен. «Например, для положительной космологической константы нам может понадобиться новая теория. Тогда вопрос в том, насколько она будет отличаться от этой. AdS пока – наилучший намёк на искомую структуру, и нам нужно совершить какой-то трюк, чтобы прийти к положительной константе». Он считает, что учёные не теряют время с этой теорией зря: «Хотя AdS и не описывает наш мир, она даст нам уроки, которые поведут нас в нужном направлении».

Объединение на территории чёрной дыры

Верлинде и Пуллин указывают на ещё одну возможность объединения сообществ струнной теории и ПКГ: загадочная судьба информации, попадающей в чёрную дыру . В 2012 году четверо исследователей из Калифорнийского университета обратили внимание на противоречие в господствующей теории. Они утверждали, что если чёрная дыра позволит информации убегать из неё, это уничтожит тонкую структуру пустого пространства вокруг горизонта чёрной дыры, и создаст высокоэнергетический барьер – «файервол». Но такой барьер несовместим с принципом эквивалентности, лежащим в основе ОТО, утверждающим, что наблюдатель не может сказать, пересёк ли он горизонт. Эта несовместимость внесла возмущение в ряды струнных теоретиков, считавших, что понимают связь чёрных дыр с информацией, и вынужденных снова схватиться за свои записные книжки.

Но эта проблема важна не только для струнных теоретиков. «Весь этот спор вокруг файерволов вёлся в основном в сообществе струнных теоретиков, чего я не понимаю,– сказал Верлинде. – Вопросы квантовой информации, запутанности и постройки математического Гилбертова пространства – это то, над чем работали специалисты по ПКГ».

В это время произошло незамеченное большинством специалистов по струнам событие – падение барьера, возведённого суперсимметрией и дополнительными измерениями. Группа Томаса Тиманна в Университете Эрлангена - Нюрнберга (Германия) распространила ПКГ на высшие измерения и включила в неё суперсимметрию – а эти понятия раньше были территорией исключительно теории струн.

Недавно Норберт Бодендорфер [Norbert Bodendorfer ], бывший студент Тиманна, работающий в Варшавском университете, применил методы петлевой квантификации из ПКГ к пространству AdS. Он утверждает, что ПКГ полезно для работы с дуальностью AdS/CFT в тех случаях, когда струнные теоретики не могут проводить гравитационные подсчёты. Бодендорфер считает, что существовавшая между ПКГ и струнами пропасть исчезает.

«Иногда у меня складывалось впечатление, что струнные теоретики очень плохо разбираются в ПКГ и не хотят говорить об этом,– сказал он. – Но более молодые специалисты демонстрируют открытость взглядов. Им очень интересно, что происходит на стыке областей».

«Самое большое различие состоит в том, как мы определяем наши вопросы,– говорит Верлинде. – Проблема больше социологическая, а не научная, к сожалению». Он не думает, что два подхода конфликтуют: «Я всегда считал струнную теорию и ПКГ частями одного описания. ПКГ это метод, а не теория. Это метод размышления над квантовой механикой и геометрией. Это метод, который струнные теоретики могут использовать, и уже используют. Эти вещи не исключают друг друга».

Но не все уверены в этом Моше Розали [Moshe Rozali , струнный теоретик из Университета Британской Колумбии, сохраняет скептицизм по поводу ПКГ: «Я не работаю над ПКГ потому, что у неё есть проблемы с СТО,– говорит он. – Если ваш подход с самого начала без уважения относится к симметриям в СТО, вам потребуется чудо на одном из промежуточных шагов». Тем не менее, по словам Розали, некоторые математические инструменты, пришедшие из ПКГ, могут пригодиться.

«Не думаю, что существует возможность объединения ПКГ и струнной теории. Но людям обычно нужны методы, и в этом смысле они похожи. Математические методы могут пересекаться».

Также и не все приверженцы ПКГ ждут слияния двух теорий.

Карло Ровелли , физик из Марсельского университета и основатель теории ПКГ верит в преобладание своей теории.

«Сообщество любителей струн уже не такое заносчивое, как десять лет назад, особенно после жестокого разочарования отсутствием суперсимметричных частиц говорит он. – Возможно, что две теории могут быть частями одного решения… но я думаю, вряд ли. По-моему, струнная теория не смогла дать то, что она обещала в 80-х годах, и представляет собою одну из тех идей, что выглядят симпатично, но не описывают реальный мир, которых в истории науки было полно. Не понимаю, как люди ещё могут возлагать на неё надежды».

Пуллин же считает, что объявлять победу преждевременно:

«Приверженцы ПКГ говорят, что их теория единственно верна. Я под этим не подпишусь. Мне кажется, что обе теории чрезвычайно неполны».

Теория струн, и петлевая квантовая теория гравитации очень динамичны как исследовательские программы со значительными шансами открытия новых законов природы. Каждая достигла много больше, чем дальновидные эксперты могли бы предполагать при заключении пари двадцать лет назад. Мы начнем с проблем самой квантовой гравитации.

Правильная квантовая теория гравитации обязана:

Вопросы, касающиеся квантовой гравитации

  1. Сказать, верны ли принципы ОТО и квантовой механики в том виде, в каком они были установлены, или они требуют модификации.
  2. Дать точное описание природы на всех масштабах, включая планковский масштаб.
  3. Сказать нам, что есть время и пространство на языке, полностью совместимым и с квантовой теорией, и с тем фактом, что геометрия пространства- времени является динамической. Сказать, как световой конус, причинная структура, метрика и т. д. должны описываться квантово-механически, в том числе на планковском масштабе.
  4. Дать вывод энтропии и температуры черной дыры. Объяснить, как энтропия черной дыры может быть понята как статистическая энтропия, путем усреднения квантового описания.
  5. Быть совместимой с очевидно наблюдаемым, но малым, значением космологической постоянной. Объяснять энтропию космологического горизонта.
  6. Объяснить, что происходит в сингулярностях классической ОТО.
  7. Быть полностью независимой от фона. Это означает, что ни классические поля, ни решения классических полевых уравнений не появляются в теории никаким способом, кроме как приближения к квантовым состояниям и историям.
  8. Предсказывать новые физические явления, по крайней мере некоторые из которых проверяемы в современных экспериментах или экспериментах ближайшего будущего.
  9. Объяснить, как классическая ОТО появляется в соответствующем низкоэнергетическом пределе из физики на планковских масштабах.
  10. Предсказать, реализуется ли наблюдаемая глобальная лоренц-инвариантность плоского пространства-времени в природе точно, вплоть до бесконечных параметров буста, или имеются модификации реализации лоренц-инвариантности для планковских масштабов энергии и импульса.
  11. Дать точные предсказания для рассеяния гравитонов друг на друге и на других квантах во всех порядках теории возмущений вблизи полуклассического приближения

Это весьма много вопросов, но трудно поверить в квантовую теорию пространства и времени, которая бы не отвечала на каждый из них. Однако, есть один вопрос, который трудно переоценить - это требование независимости от фона. Есть две причины для этого требования. Первая - это дело принципа. В течение всей истории физики, начиная с греческих первопроходцев, существовали две конкурирующие точки зрения на природу пространства и времени. Первая состоит в том, что они не являются частью динамической системы, но, вместо этого, представляют собой навечно зафиксированный, нединамический аспект фона, на котором определены законы природы. Это точка зрения Ньютона и она обычно называется абсолютной точкой зрения.

В русскоязычной литературе вместо термина инвариантность относительно пространственно-временных диффеоморфизмов или часто используемого ниже термина диффеоморфная инвариантность обычно используются термины общая инвариантность или общая ковариантность. Однако, мы в переводе будем следовать оригиналу.

Вторая точка зрения состоит в том, что геометрия пространства и времени есть аспект динамической системы, которая представляет вселенную. Пространство и время, следовательно, не фиксированы, но эволюционируют, как и всё остальное, в соответствие с некоторыми законами. Более того, в соответствие с этой точкой зрения пространство и время относительны. Это означает, что нет абсолютного смысла во времени и месте события, кроме того, которое может быть определено по корреляции наблюдаемых величин или по отношениям различных событий. Это точка зрения Лейбница, Маха и Эйнштейна и называется относительной точкой зрения.

Принцип общей ковариантности

Принцип общей ковариантности утверждает что, физическое уравнение выполняется в произвольном гравитационном поле если уравнение выполняется в отсутствие гравитации, то есть оно соответствует законам специальной теории относительности, когда метрический тензор в нем равняется тензору плоского пространства-времени Минковского и аффинная связность равна нулю (эквивалентность всех систем отсчета) и если физическое уравнение общековариантно, то есть оно сохраняет свою форму при произвольном преобразовании координат (физическое содержание уравнений не зависит от выбора системы координат). Если в результате преобразования координат зависимые от них переменные (функции координат) изменились по некоторому закону, то принцип общей ковариантности требует, чтобы новые функции от новых координат удовлетворяли уравнениям того же вида, что и старые функции от старых координат. Принцип общей ковариантности имеет большое эвристическое значение для вывода уравнений общей теории относительности.

Предположим, что мы рассматриваем какое-нибудь уравнение, удовлетворяющее принципу общей ковариантности, в произвольном гравитационном поле. Уравнение общековариантно, то есть оно справедливо во всех системах координат, если оно справедливо в какой-либо системе координат. Но в любой данной точке имеется локально-инерциальная система координат, в которой гравитация отсутствует. Условие соответствия законам специальной теории относительности в отсутствие гравитации означает, что уравнение справедливо в локально-инерциальной системе координат и, в силу общей ковариантности, справедливо во всех других системах координат. Таким образом, принцип общей ковариантности вытекает из принципа эквивалентности.

Эйнштейновская общая теория относительности есть реализация относительной точки зрения. Наблюдения, которые показывают, что гравитационное излучение переносит энергию из систем двойных пульсаров в две степени свободы излучения, точно как предсказывает теория Эйнштейна, могут рассматриваться как смертельный удар для абсолютной точки зрения. Тот факт, что наблюдаются именно две, но не пять, степеней свободы, означает, что калибровочная инвариантность законов природы включает инвариантность относительно пространственно-временных диффеоморфизмов. Это означает, что метрика есть полностью динамическая величина, и ни одна из компонент метрики не является фиксированной и нединамической.

Как отмечали Эйнштейн и многие другие ученые, инвариантность относительно диффеоморфизмов прямо связана с независимостью теории от фона. Это показывает «аргумент дырки», и анализ Дирака смысла калибровочной симметрии. Имеется хорошее обсуждение этого обстоятельства Стахелем (Stachel) , Барбором (Barbour) , Ровелли и другими. Таким образом, классическая ОТО независима от фона. Ареной ее динамики не является пространство-время, ареной является конфигурационное пространство всех степеней свободы гравитационного поля, которое есть метрика по модулю диффеоморфизмов. Теперь мы можем спросить, обязана ли квантовая теория гравитации тоже быть независимый от фона?

Противное напоминало бы ситуацию, когда некоторое специальное классическое поле Янга-Миллса требуется для определения квантовой динамики в КХД, в то время как никакого фиксированного, не-динамического поля не требуется для определения классической теории. До сих пор многие выражают точку зрения, что, возможно, квантовая теория гравитации требует фиксированного не-динамического фона пространства-времени уже для своего определения. Это выглядит почти абсурдным, так как означает выбор некоторого частного решения классической теории (среди бесконечно многих) и придание ему привилегированной роли в квантовой теории. Более того, не должно существовать экспериментального способа, позволяющего узнать, который классический фон выбран на эту привилегированную роль, так как любой эффект, зависящий от фиксированного фона и выживший в низкоэнергетическом пределе, будет нарушать диффеоморфную инвариантность.

Но это бы означало, что диффеоморфная инвариантность не является точной калибровочной симметрией в низкоэнергетическом пределе, и отсюда следует, что когда материя ускоряется, должны возбуждаться более чем две степени свободы метрики. Но это бы противоречило чрезвычайной чувствительности в согласии ОТО и наблюдаемой скорости распада орбит двойных пульсаров. Таким образом, аргументы как на основании общих принципов, так и эксперимента, поддерживают заключение, что природа сконструирована так, что даже в квантовой области все степени свободы геометрии пространства-времени являются динамическими. Но если так, никакая классическая метрика не может играть никакой роли в формулировке квантовой теории гравитации

В опровержение иногда говорят, что приемлемая теория может быть сформулирована так, что квантовая теория зависит от классического фона, однако может быть использован любой из огромного числа фонов, так что теория не требует одного частного фона. Здесь упускается из виду, что такая теория фактически состоит из длинного списка теорий, по одной на каждый фон. Это не дает возможности реализовать идею, что квантовое пространство-время как целое является динамическим, так, что различные фоны возникают как решения квантовой динамики. Недостаточно того, что различные фоны могут быть решениями различных классических уравнений, так как это ведет к смешанной и, скорее всего, несостоятельной теории, в которой геометрия расщепляется так, что одна часть (фон) является решением классических уравнений, в то время как другая часть (гравитационные волны «над фоном») удовлетворяет квантовым уравнениям, которые зависят от выбора фона. Такой подход может возникнуть как приближение к фундаментальной теории, но он не может быть самой фундаментальной теорией.

Вопросы, касающиеся космологии

Теперь мы упомянем космологические загадки, которые до сих пор не решены и которые, как многие думают, требуют физики планковских масштабов для своего решения.

  1. Объяснить, почему наша вселенная явно началась с чрезвычайно маловероятных начальных условий.
  2. В частности, объяснить, почему на временах великого объединения вселенная имела начальные условия подходящие для того, чтобы имела место инфляция или, альтернативно, давала другой механизм инфляции или механизм, с помощью которого могут быть продублированы успехи инфляционной космологии.
  3. Объяснить, был ли большой взрыв первым моментом времени, или было что-то до него.
  4. Объяснить, что такое темная материя. Объяснить, что такое темная энергия. Объяснить, почему в настоящее время темная материя в пятеро плотнее обычной адронной материи, в то время как темная энергия еще вдвое плотнее темной материи.
  5. Дать предсказания, выходящие за пределы текущей стандартной модели космологии, такие, как поправки к спектру микроволнового фона, предсказываемому инфляционными моделями.

Вопросы, касающиеся объединения сил

Теперь упомянем проблемы физики элементарных частиц, которые должны быть разрешены любой объединенной теорией взаимодействий. Так как тория струн обязана в будущем стать такой теорией, она должна быть оценена в отношении способности ответить на эти вопросы. Кроме того, возможно, но не необходимо, что петлевая квантовая гравитация предложит ответы на некоторые из этих вопросов.

  1. Выяснить, существует ли дальнейшее объединение сил, включающее гравитацию, или нет.
  2. Объяснить общие особенности стандартной модели физики элементарных частиц, т. е. объяснить, почему силы описываются спонтанно нарушенной калибровочной теорией с группой $SU(3)\times SU(2)\times U(1)$ тавлении.
  3. Объяснить, почему наблюдается широкая иерархия в отношениях масс, от план- ковской массы до массы нейтрино и, наконец, вплоть до космологической постоянной. Описать механизм, с помощью которого создается иерархия, будь это спонтанное нарушение более симметричной теории или другие способы. Объяснить, почему космологическая постоянная так мала в планковской шкале.
  4. Объяснить актуальные значения параметров стандартной модели: массы, константы связи, углы смешивания и т. д. Объяснить наблюдаемое значение космологической постоянной.
  5. Сказать нам, существует ли единственная состоятельная теория природы, которая дает однозначные предсказания результатов всех экспериментов или, как это часто предполагается, некоторые или все вопросы, оставленные открытыми стандартной моделью физики частиц, должны найти ответ в терминах выбора среди возможных состоятельных феноменологий, допускаемых фундаментальной теорией.
  6. Дать некоторые экспериментальные предсказания явлений, уникальных для этой теории, которые проверяемы в современных экспериментах или экспериментах недалекого будущего.

Фундаментальные вопросы

Наконец, существуют вопросы оснований квантовой теории, которые, как многие думают, тесно связаны с проблемой квантовой гравитации.

  1. Решить проблему времени в квантовой космологии.
  2. Объяснить, как должна быть модифицирована квантовая механика, чтобы быть приложимой к замкнутым системам, таким как вселенная, которые содержат своего собственного наблюдателя.
  3. Разрешить загадку о том, куда исчезает информация при испарении черной дыры.

Некоторые принципиальные замечания

Современный этап развития теории тяготения характеризуется не только поисками новых эффектов и постановкой новых экспериментов, но и более глубоким анализом основных посылок теории и концептуальных проблем, среди которых особое место занимает проблема энергии гравитационного поля. Трудности, связанные с нетензорным характером величин, описывающих энергию гравитационного поля, оказались настолько серьезными, что их стали рассматривать как проявление особых свойств гравитационного поля - универсальности, неэкранируемости, нелокализуемости.

Однако детальный анализ показывает, что никакими особыми свойствами гравитационного поля невозможно объяснить так называемую нелокализуемость этого поля. Не только энергия, но и все результаты теории, кроме функции Лагранжа и уравнений гравитационного поля оказываются нековариантными. Таким образом, в общей теории относительности сложилась необычная ситуация, своеобразие которой состоит в том, что в теории, принципы которой сформулированы безукоризненно в математическом отношении, важные физические следствия находятся в противоречии с исходными положениями.

Так, при формулировке ОТО постулируется общее логическое требование допустимости любых систем координат, однако оказалось, что в построенной теории динамические характеристики гравитационного поля (кроме уравнений Эйнштейна) - плотность энергии, импульса - описываются нетензорными величинами. Вследствие этого невозможно однозначно описать распределение энергии-импульса любой физической системы, находящейся в гравитационном поле. Отсюда и возникает понятие о так называемой нелокализуемости гравитационного поля. Энергия гравитационного поля не локализуема, то есть не существует однозначно определенной плотности энергии.

Нелокализуемость

Природа этого явления состоит в следующем. Если в описании электромагнитного поля кроме векторного потенциала участвует еще и метрика, то в эйнштейновский закон гравитации кроме гравитационных потенциалов не входят никакие другие величины. В случае электромагнитного поля физической величиной является класс эквивалентности векторных потенциалов, который определяется одной произвольной функцией. Выбор представителя из каждого класса эквивалентности достигается наложением условия Лоренца, которое является общековариантным, то есть независимым от выбора системы координат, поскольку в теории есть так называемый фоновый объект - метрика Минковского. Для гравитационного поля физической величиной является класс эквивалентности гравитационных потенциалов, определяемый четырьмя произвольными функциями. От выбора этих функций не зависит только одна величина, действие Гильберта.

Продолжая аналогию, замечаем, что в теории Максвелла различным представителям класса эквивалентности соответствует не только одно и то же действие, но и так называемый тензор электромагнитного поля, поэтому различным представителям класса эквивалентности соответствует одна и та же сила Лоренца и плотность энергии. В этом смысле электромагнитное поле локализуемо. В теории Эйнштейна различные представители класса эквивалентности отвечают одному и тому же гравитационному полю, которое по-разному расположено в пространстве - времени ("ориентированно") относительно одного и того же наблюдателя.


Различные представители соответствуют различным ориентациям. Неоднозначность в выборе ориентации определяется четырьмя произвольными функциями координат. Поскольку в теории нет никаких объектов кроме гравитационных потенциалов, то выбор представителя из каждого класса эквивалентности общековариантно можно осуществить только при введении в теорию нединамического, так называемого фонового объекта - фоновой. Выбор представителя из каждого класса эквивалентности достигается наложением четырех общековариантных условий на ковариантные производные гравитационных потенциалов относительно фоновой связности. Нелокализуемость гравитационного поля определяется тогда свободой выбора фоновой метрики или фоновой связности. Таким образом, проблема энергии гравитационного поля сводится к вопросу о физическом смысле фоновой связности, который, следовательно, приобретает принципиальное значение.

Если на одном и том же многообразии задано гравитационное поле и фоновая связность, то гравитирующие частицы движутся по геодезическим, определяемым гравитационными потенциалами. Тогда возникает естественный вопрос о природе частиц, движущихся по геодезическим, определяемым фоновой связностью. Существование частиц такого рода является очевидной необходимостью, без которой ставить вопрос о физическом смысле фоновой связности проблематично. Можно было бы попытаться уйти от ответа на последний вопрос, сказав, что частицы движутся по геодезическим фоновой связности в отсутствие гравитационного поля. Однако отсюда следует, что и фоновая связность имеет смысл только в отсутствие гравитационного поля. Таким образом, следуя чисто логическим требованиям, вытекающим из непреложных фактов, мы приходим к выводу о существовании негравитирующей формы энергии, которая, как видно, напрямую связана с приданием физического смысла гравитационным потенциалам в рамках принципа общей ковариантности, который, как уже неоднократно подчеркивалось, является чисто логическим требованием, относящимся к любой физической теории, в том числе и к теории гравитационного поля.

Отсюда следует необходимость экспериментальной проверки принципа универсальности гравитационных взаимодействий. "Справедливость этого принципа в области микроскопической физики не столь очевидна. Известно много правил, выполняющихся с большой точностью для электромагнитного и других типов взаимодействий; вполне возможно, что особая роль, отводимая гравитационному взаимодействию, исчезнет, уступив место еще неизвестной гармонии."

Эта цитата взята из работы Вигнера, чтобы подчеркнуть, что проверка принципа универсальности гравитационных взаимодействий важна не только в связи проблемой самосогласованности общей теории относительности, но и для выяснения роли гравитационных сил в физике микромира.

Повесть о двух теориях

Перед тем, как привести главные результаты и открытые вопросы каждой теории, полезно дать обзор их главных общих точек и главных отличий. И сходства и различия поразительны и нетривиальны, и, вероятно, читателю будет полезно, если они будут здесь освещены перед тем, как мы с необходимостью погрузимся в более подробные детали и более тонкие различия, необходимые для получения аккуратной оценки каждой из теорий.

Общие постулаты

И теория струн и петлевая квантовая гравитация являются развитием набора идей, первоначально введенных в 1960-х для понимания физики адронов. В этом качестве они разделяют несколько общих постулатов.


  • Фундаментальная теория не является обычной Пуанкаре-инвариантной локальной теорией поля.
  • Фундаментальные возбуждения есть протяжённые объекты. Они включают одномерные возбуждения и двух- (и, возможно, более) мерные мембрано- подобные возбуждения.
  • Дуальность. Одномерные возбуждения имеют дуальное описание как кванты электрического потока неабелевой калибровочной теории. Возбуждения больших размерностей имеют дуальное описание в терминах электрических и магнитных потоков боольших размерностей.
    Были предложены различные версии голографического принципа, которые отличаются степенью, в которой теории могут быть полностью редуцированы к динамической теории на поверхности меньшей размерности.

Тот факт, что теория струн и петлевая квантовая гравитация разделяют эти общие постулаты, отражается в том, что их математические формулировки частично пересекаются. Например, обе они используют конформную теорию поля и теорию представлений квантовых групп.

Обе теории могут быть сформулированы на языке, в котором все степени свободы представляются как большие матрицы. Эти формулировки являются непертурбативными в том смысле, что динамика матриц кодирует бесконечное число членов теории возмущений.

Однако, имеются также и очень существенные различия.

И теория струн, и петлевая квантовая гравитация начинаются с использования одномерных протяженных объектов, которые по дуальности соответствуют потоку линий квантованного калибровочного поля, они и являются фундаментальными степенями свободы теории. Они отличаются в трёх отношениях:

  • Первое отличие . Струны рассматриваются двигающимися в классическом фоне, характеризуемом фиксированным выбором метрики и других классических полей. Петли предполагаются существующими на более фундаментальном уровне, на котором нет ни классической метрики, ни других полей.
  • Второе отличие. Калибровочное поле в случае петель рассматривается как калибрующее все или часть локальных лоренцевых преобразований. Калибровочное поле в случае открытых струн рассматривается как соответствующее полю Янга-Миллса.
  • Третье отличие. Два подхода принимают совершенно разные стратегии в трактовке невозможности общей теории относительности существовать как пертурбативно перенорнормируемой квантовой теории поля. Это связано с физическими предположениям, лежащим в основе использования теории возмущений. Соответствующие постулаты включают 1) пространство-время гладко вплоть до произвольно малых масштабов, так что существуют линеаризуемые возмущения вплоть до произвольно малых длин волн. 2) глобальная лоренцева симметрия является точной симметрией спектра флуктуаций вблизи квантового состояния, соответствующего пространству Минковского, хорошей вплоть до произвольно малых длин волн и параметров буста.

Теория струн предполагает, что эти два постулата являются точными. Отсюда и стратегия искать пертурбативную теорию, включающую гравитоны, в которой эти постулаты могут быть точно реализованы.

Напротив, петлевая квантовая гравитация принимает, что мы должны квантовать ОТО без этих предположений. Действительно, так как глобальная лоренцева инвариантность не является симметрией классической ОТО, она не может предполагаться и при любом точном квантовании этой теории. Эти два предположения должны быть, потом проверены в том смысле, что мы обязаны посмотреть, до какой степени они воспроизводятся в классическом пределе квантовой теории. Фактически, как мы увидим, есть свидетельства, что они ложны, по крайней мере, в одном согласованном квантовании ОТО.


Из-за этих различий две теории имеют разные постулаты. Они ведут, также, к совершенно разным физическим картинам. Поэтому две теории дают совершенно различные предсказания для будущих экспериментов. Полезно сразу это отметить.

Характерные предсказания теории струн

Теория струн требует, чтобы мир имел большое число до сих пор не обнаруженных размерностей, степеней свободы и симметрий. Когда мы будем обсуждать это ниже в деталях, будет отмечено, что теория струн требует, чтобы природа имела 6 или 7 размерностей пространства за пределами тех, которые наблюдаются. Она также предсказывает существование нового типа симметрии, называемой суперсимметрией, который тоже до сих пор не наблюдался. Это симметрия, которая связывает фермионы с бозонами. К сожалению, оказывается, что суперсимметрия не может быть использована, чтобы связать какие-нибудь из известных сейчас фермионов с какими-нибудь из известных сейчас бозонов. Следовательно, суперсимметрия и теория струн предсказывают, что существует огромное количество еще не наблюдавшихся элементарных частиц.

Есть некоторые факты, которые рассматриваются как возможные косвенные свидетельства в пользу суперсимметрии в физике частиц. Одно свидетельство имеет отношение к вопросу, сходятся ли калибровочные и Юкавские константы связи на одном и том же масштабе великого объединения. В стандартной модели имеется приблизительная, но не точная унификация. Унификация является более точной в минимальной суперсимметричной стандартной модели, в которой треугольник, который получается из траекторий трех бегущих констант связи, меньше, и более правдоподобно, что унификация достигается пороговыми эффектами. Однако, на поведение констант связи могут также влиять другие факторы, такие как массы нейтрино.

По этому поводу нужно отметить две вещи. Во-первых, до сих пор нет никаких наблюдательных указаний на существование дополнительных размерностей и симметрий частиц, которые предсказываются теорией струн. Во-вторых, теория струн не уникальна в предсказании этих особенностей. Еще до теории струн изучались высшие размерности и существовали обычные теории с суперсимметрией. Эти теории продолжают изучаться независимо от теории струн. Нелегко указать эксперимент, который однозначно подтвердил бы предсказание теории струн, который не был бы также предсказанием обычной суперсимметричной теории или теории поля с высшими размерностями.

Есть одно предположение, которое делается в теории струн, и которое может быть предметом экспериментальной проверки. Это то, что специальная относительность выполняется на всех масштабах в оригинальной форме, которую придал ей Эйнштейн. На техническом языке это означает, что теория предполагает, что лоренц-инвариантность есть точная симметрия мира, в котором мы живем, за исключением только эффектов кривизны пространства-времени.

Характерные предсказания петлевой квантовой гравитации.

Петлевая квантовая гравитация тоже ведет к характерным предсказаниям новых явлений, но весьма иного типа. Фактически, петлевая квантовая гравитация полностью совместима с постулатом, что мир имеет только три пространственных размерности и одно временное измерение и известно, что она совместима с широким диапазоном предположений о материи, содержащейся в мире, включая стандартную модель. Поэтому она не требует размерностей, симметрий или степеней свободы кроме тех, что наблюдаются. В то же время существуют версии петлевой квантовой гравитации, которые включают суперсимметрию (по крайней мере вплоть до $N = 2$) и многие ее результаты распространяются на высшие размерности. Поэтому при появлении указаний на существование суперсимметрии или на высшие размерности, для петлевой квантовой гравитации не возникнет проблем.
Вместо этого, предсказания петлевой квантовой гравитации касаются структуры пространства и пространства-времени на очень малых расстояниях. В частности, петлевая квантовая гравитация предсказывает, что гладкая картина пространства-времени классической ОТО есть в действительности только результат усреднения и огрубления дискретной структуры, в которой поверхности и области могут иметь только определенные, дискретные квантованные значения площадей и объемов. Петлевая квантовая гравитация дает специфические предсказания для дискретной квантовой геометрии на коротких дистанциях. Более того, эти предсказания выводятся из первых принципов, следовательно в них отсутствуют элементы подгонки. В этом отношении петлевая квантовая гравитация отличается от предшествующих подходов, которые постулируют некоторую форму дискретной структуры как стартовую позицию, не выводя ее как следствие объединения квантовой теории и ОТО.


Оказывается, отсюда имеются следствия, имеющие отношение к вопросу, выполняется ли специальная относительность и лоренц-инвариантность в природе точно, или является только приближением, которое верно на масштабах много больших планковской шкалы. Несколько недавних вычислений, выполненных различными методами, дают предсказания для изменения соотношения между энергией и импульсом для элементарных частиц. Соотношения имеют форму \begin{equation} E^{2} = p^{2}+ M^{2} + \alpha l_{Pl}E^{3}+ \beta l_{Pl}^{2}E^{4}+ ...~~~~~~~~~~~~~~~~~(2) \end{equation} и были получены предсказания для лидирующих коэффициентов а, которые, вообще говоря, зависят от спина и спиральности.
Это есть, следовательно, область несоответствия с теорией струн. Более того, эти модификации оказываются проверяемыми в планируемых экспериментах . Следовательно различные предсказания теории струн и петлевой квантовой гравитации, касающиеся судьбы лоренц-инвариантности, дают возможность экспериментально различить теории в недалеком будущем.

Экспериментальная ситуация в недалеком будущем

Наиболее важным развитием в квантовой гравитации последних нескольких лет было осознание, что теперь становится возможным исследовать физику на планковских масштабах экспериментально. В зависимости от предположений в отношении динамики, имеется хорошая экспериментальная чувствительность к факторамa в формуле (2) для фотонов, электронов и протонов. В течение предстоящих нескольких лет в ряде экспериментов ожидается такой рост чувствительности, что даже если лидирующий член порядка$E^{3}$ отсутствует, не является невозможным установить ограничение порядка единицы на$\beta, $ коэффициент перед членом порядка $E^{4}.$

Однако, критически важно отметить, что для того, чтобы измерить а и в , нужно указать, как лоренц-инвариантность трактуется в теории. Имеются две очень разные возможности, которые должны различаться.

  1. Сценарий A) Нарушается относительность инерциальных систем отсчета и существует выделенная система отсчета. В этом случае анализ приходится вести в выделенной системе отсчета. Наиболее вероятным предположением является то, что выделенная система отсчета совпадает с системой, покоящейся относительно космического микроволнового фона. В таких теориях предполагается, что преобразования энергии и импульса остаются линейными.
  2. Сценарий B) Относительность инерциальных систем отсчета сохраняется, но преобразования Лоренца реализуются нелинейно, когда действуют на собственные состояния энергии и импульса теории. Такие теории называются модифицированными теориями специальной относительности или двойными теориями специальной относительности. Примеры даются некоторыми формами некоммутативной геометрии, например, пространством-временем к -Минковского. В таких теориях преобразование энергии и импульса становится нелинейными, что, конечно, влияет на анализ экспериментов. В некоторых, но не во всех, случаях таких теорий, геометрия пространства-времени становится некоммутативной.

Среди экспериментов, которые либо уже дают достаточную чувствительность для измерения $\alpha$ и $\beta$, или она ожидается к 2010 (как видно здесь и далее, прогноз Автора, по поводу успехов экспериментальной физики, не оправдался, но возможно, перенесся на ближайшее будущее. - den ) году, имеются следующие:

  1. Имеются очевидные нарушения ГЗК-предела, наблюдаемые в космических лучах ультравысоких энергий в эксперименте AGASA. Экспериментальная ситуация не совсем ясна, но ожидается, что новый детектор космических лучей AUGER, который уже работает, разрешит проблему в течение следующего года или двух. Если существует нарушение ГЗК-предела, возможное объяснение приходит из физики планковских масштабов (2).
    В сценарии A) нарушение ГЗК-предела может быть объяснено членами $E^3$ или $E^4$ в соотношении энергии и импульса протона. Однако в случае B) объяснять нарушение ГЗК-предела с помощью модификации связи энергии и импульса на Планковских масштабах менее естественно, но имеются предложения для таких форм этих теорий, в которых это получается.
  2. Аналогичная аномалия, возможно, зафиксирована для ТэВ-ных фотонов, приходящих от блазаров. Аналогичные замечания приложимы к объяснительной силе сценариев A) и B) в случае, если аномалия существует.
  3. Следствием (2) является зависимость скорости света от энергии. Этот эффект можно искать во временных характеристиках гамма-барстеров. Существующие данные ограничивают а на уровне$\alpha < \approx 10^{4},$ в то время как ожидается, что эксперимент GLAST будет чувствителен к а порядка единицы в 2006 году. Заметим, что это приложимо к обоим Сценариям A) и B).
  4. Существующие наблюдения синхротронного излучения Крабовидной туманности вместе с разумными астрофизическими предположениями, для сценария A) накладывают очень сильное (порядка $10^{-9}!!$) ограничение на$\alpha$ для протонов и электронов.
  5. Существующие данные точных экспериментов ядерной и атомной физики дают очень сильные ограничения на$\alpha$ для фотонов, электронов и адронов, снова только в Сценарии A).
  6. Существующие данные об отсутствии вакуумного эффекта Черенкова дают интересные ограничения на$\alpha$ для Сценария A) .
  7. Наблюдение эффекта двойного лучепреломления поляризованного света далеких галактик дает сильные ограничения на возможное$\alpha$, зависящее от спиральности.
  8. Ожидается, что при определенных предположениях14, наблюдения фазовой когерентности в звездной и галактической интерферометрии в недалеком будущем дадут ограничения порядка единицы на$\alpha$.
  9. Определенные гипотезы о планковской шкале ведут к предсказанию шума в детекторах гравитационных волн, которые могут наблюдаться в установках LIGO и VIRGO.
  10. В некоторых космологических сценариях модификация формы (2) ведет к искажению спектра микроволнового фона, которое может наблюдаться в измерениях недалекого будущего.

Речь идёт о пределе Грейзена-Зацепина-Кузьмина - энергии порядка $10^{20}$ эВ, при которой неупругое рассеяние протонов на микроволновом космическом фоне становится эффективным, и потому ожидается обрезание спектра космических лучей. В настоящее время (конец 2007 г.) имеются определенные результаты эксперимента HiRes, которые противоречат результатам AGASA и указывают на наличие обрезания при ГЗК-энергии (см. R. U. Abbasi и др., arXiv:astro-ph/0501317); спектрометр AUGER еще не введен в строй полностью, но также выдает результаты, согласующиеся с HiRes, но противоречащие AGASA (см. Pierre Auger Collaboration, arXiv:astro-ph/0507150). С большой вероятностью результаты AGASA опровергнуты (Прим. перев.)

Можно суммировать эту ситуацию, сказав, что теория квантовой гравитации, которая ведет к Сценарию A) и предсказывает соотношение энергии и импульса (2) с $\alpha$порядка единицы, по-видимому, уже исключена. Это поражает, так как еще несколько лет назад было общепринято, что будет невозможно тестировать какие-либо гипотезы, касающиеся планковской шкалы.

Мы можем также упомянуть другие три эксперимента, которые к 2010 году могут иметь отношение к проблеме квантовой гравитации.

  1. Свидетельства за или против суперсимметрии могут быть получены при ТэВ-ных энергиях в ускорителях.
  2. В экспериментах недалекого будущего будет получено уравнение состояния темной энергии. Некоторые предложения для [уравнения состояния] темной энергии основаны на модификациях соотношения энергии и импульса в форме (2).
  3. Существуют наблюдения, которые указывают на то, что постоянная тонкой структуры может зависеть от времени. Это будет подтверждено или опровергнуто. Если утверждение будет подтверждено, это будет означать большой вызов пониманию эффективной теории поля в физике низких энергий.

Комбинация всех этих экспериментальных возможностей сигнализирует, что длительный период, когда фундаментальная физика развивалась независимо от эксперимента, скоро закончится. Как показано выше, возможные экспериментальные результаты могут исключить либо теорию струн, либо петлевую квантовую гравитацию к 2010 году. Определенные гипотезы о физике планковских масштабов, которые ведут к выделенной системе отсчета в сценарии A), уже исключены или сильно ограничены наблюдениями.

Перевод осуществил Панов Александр Дмитриевич НИИЯФ МГУ, кандидат физ.-мат. наук, старший научный сотрудник.


Восемьдесят лет прошло с тех пор, как физики поняли, что теории квантовой механики и гравитации несовместимы, и загадка их комбинирования остаётся неразрешённой. За последние десятилетия исследователи изучали эту задачу двумя разными путями – через теорию струн и через квантовую гравитацию – которые практикующие их учёные считают несовместимыми. Но некоторые учёные доказывают, что для продвижения необходимо объединить усилия.

Среди попыток объединения квантовой теории и гравитации больше всего внимания привлекла теория струн . Её предпосылка проста: всё состоит из маленьких струн. Струны могут быть замкнуты или разомкнуты; они могут вибрировать, растягиваться, объединяться или распадаться. И в этом многообразии лежат объяснения всех наблюдаемых явлений, включая материю и пространство-время.

Петлевая квантовая гравитация (ПКГ), наоборот, придаёт меньше значения материи, присутствующей в пространстве-времени, и больше концентрируется на свойствах самого пространства-времени. В теории ПКГ пространство-время – это сеть. Плавный фон теории гравитации Эйнштейна заменяется узлами и звеньями, которым назначаются квантовые свойства. Таким образом, пространство состоит из отдельных кусочков. ПКГ в основном занимается изучением этих кусочков.

Этот подход долгое время считался несовместимым с теорией струн. В самом деле, их различия очевидны и глубоки. Для начала, ПКГ изучает кусочки пространства-времени, а теория струн исследует поведения объектов в пространстве-времени. Эти области разделяют и технические проблемы. Теории струн необходимо, чтобы в пространстве было 10 измерений; ПКГ в высших измерениях не работает. Теория струн предполагает наличие суперсимметрии, в которой у всех частиц есть пока не обнаруженные партнёры. Суперсимметрия не свойственна ПКГ.

Эти и другие различия разбили сообщество физиков-теоретиков на два лагеря. «Конференции разделяются, - говорит Дордж Пуллин , физик из Университета штата Луизиана и соавтор учебника по ПКГ . – Петлевики ездят на петлевые конфы, струнники – на струнные. Они теперь даже не ездят на конференции по „физике“. Я думаю, что это весьма прискорбно».

Но некоторые факторы могут сдвинуть эти лагеря поближе. Новые теоретические открытия выявили возможные сходства между ПКГ и теорией струн. Новое поколение струнных теоретиков вышло за пределы струнной теории и начало поиски методов и инструментов, могущих оказаться полезными для создания «теории всего». И недавний парадокс с потерей информации в чёрных дырах заставил всех почувствовать себя скромнее.

Более того, в отсутствие экспериментальных подтверждений струнной теории или ПКГ, математическое доказательство того, что они являются двумя сторонами одной монеты, послужило бы доводом в пользу того, что физики в поисках «теории всего» движутся в верном направлении. Комбинация ПКГ и струнной теории сделала бы новую теорию единственной .

Неожиданная связь

Попытки решить некоторые проблемы ПКГ привели к первой неожиданной связи с теорией струн. У изучающих ПКГ физиков нет чёткого понимания того, как перейти от кусочков сети пространства-времени к крупномасштабному описанию пространства-времени, совпадающему с ОТО Эйнштейна – нашей лучшей теорией гравитации. Более того, их теория не может примириться с тем особым случаем, в котором гравитацией можно пренебречь. Это проблема, подстерегающая любую попытку использования пространства-времени по кусочкам: в СТО линейные размеры объекта уменьшаются в зависимости от движения наблюдателя относительно объекта. Сжатие также влияет и на размер кусочков пространства-времени, которые воспринимаются по-разному наблюдателями, движущимися на разных скоростях. Это расхождение приводит к проблемам с центральным принципом теории Эйнштейна – что законы физики не зависят от скорости наблюдателя.

«Сложно вводить дискретные структуры, не испытывая проблем с СТО»,- говорит Пуллин. В своей работе, написанной в 2014 году с коллегой Рудольфо Гамбини, физиком из Республиканского университета Уругвая в Монтевидео, Пуллин пишет, что приведение ПКГ в соответствие с СТО неизбежно влечёт за собой появление взаимодействий, похожих на присутствующие в теории струн.

То, что у этих двух подходов есть что-то общее, казалось Пуллину вероятным со времён плодотворного открытия, сделанного в конце 1990-з Хуаном Малцаденой , физиком из Института перспективных исследований в Принстоне, штат Нью-Джерси. Малцадена в антидеситтеровском пространстве-времени (AdS) привёл в соответствие теорию гравитации и конформную теорию поля (CFT) на границе пространства-времени. Используя подход AdS/CFT, теорию гравитации можно описать при помощи более понятной теории поля.

Полная версия дуализма пока является гипотезой, но у неё есть хорошо разобранный ограничивающий случай, к которому не имеет отношения теория струн. Из-за того, что струны в этом случае не играют роли, его можно использовать в любой теории квантовой гравитации. Пуллину видится здесь точка соприкосновения.


ПКГ в представлении художника

Герман Верлинде , физик-теоретик из Принстонского университета, частенько работающий с теорией струн, считает правдоподобным то, что методы ПКГ могут пролить свет на гравитационную сторону дуализма. В недавней работе он описал упрощённую модель AdS/CFT в двух измерениях для пространства и одного для времени, или, как говорят физики, в случае «2+1». Он обнаружил, что пространство AdS можно описать при помощи таких сетей, что используются в ПКГ. Несмотря на то, что вся конструкция пока работает в «2+1», она предлагает новый взгляд на гравитацию. Верлинде надеется обобщить модель для большего количества измерений. «На ПКГ смотрели слишком узко. Мой подход включает и другие области. В интеллектуальном смысле это взгляд в будущее»,- сказал он.

Но даже если удастся скомбинировать методы ПКГ и струнной теории, чтобы продвинуться вперёд с пространством AdS, останется вопрос: насколько такая комбинация окажется полезной? У пространства AdS космологическая константа отрицательная (это число описывает геометрию Вселенной на больших масштабах), а у нашей Вселенной – положительная. Мы не живём в математической конструкции, описываемой пространством AdS.

Подход Верлинде прагматичен. «Например, для положительной космологической константы нам может понадобиться новая теория. Тогда вопрос в том, насколько она будет отличаться от этой. AdS пока – наилучший намёк на искомую структуру, и нам нужно совершить какой-то трюк, чтобы прийти к положительной константе». Он считает, что учёные не теряют время с этой теорией зря: «Хотя AdS и не описывает наш мир, она даст нам уроки, которые поведут нас в нужном направлении».

Объединение на территории чёрной дыры

Верлинде и Пуллин указывают на ещё одну возможность объединения сообществ струнной теории и ПКГ: загадочная судьба информации, попадающей в чёрную дыру . В 2012 году четверо исследователей из Калифорнийского университета обратили внимание на противоречие в господствующей теории. Они утверждали, что если чёрная дыра позволит информации убегать из неё, это уничтожит тонкую структуру пустого пространства вокруг горизонта чёрной дыры, и создаст высокоэнергетический барьер – «файервол». Но такой барьер несовместим с принципом эквивалентности, лежащим в основе ОТО, утверждающим, что наблюдатель не может сказать, пересёк ли он горизонт. Эта несовместимость внесла возмущение в ряды струнных теоретиков, считавших, что понимают связь чёрных дыр с информацией, и вынужденных снова схватиться за свои записные книжки.

Но эта проблема важна не только для струнных теоретиков. «Весь этот спор вокруг файерволов вёлся в основном в сообществе струнных теоретиков, чего я не понимаю,- сказал Верлинде. – Вопросы квантовой информации, запутанности и постройки математического Гилбертова пространства – это то, над чем работали специалисты по ПКГ».

В это время произошло незамеченное большинством специалистов по струнам событие – падение барьера, возведённого суперсимметрией и дополнительными измерениями. Группа Томаса Тиманна в Университете Эрлангена - Нюрнберга (Германия) распространила ПКГ на высшие измерения и включила в неё суперсимметрию – а эти понятия раньше были территорией исключительно теории струн.

Недавно Норберт Бодендорфер [Norbert Bodendorfer ], бывший студент Тиманна, работающий в Варшавском университете, применил методы петлевой квантификации из ПКГ к пространству AdS. Он утверждает, что ПКГ полезно для работы с дуальностью AdS/CFT в тех случаях, когда струнные теоретики не могут проводить гравитационные подсчёты. Бодендорфер считает, что существовавшая между ПКГ и струнами пропасть исчезает. «Иногда у меня складывалось впечатление, что струнные теоретики очень плохо разбираются в ПКГ и не хотят говорить об этом,- сказал он. – Но более молодые специалисты демонстрируют открытость взглядов. Им очень интересно, что происходит на стыке областей».

«Самое большое различие состоит в том, как мы определяем наши вопросы,- говорит Верлинде. – Проблема больше социологическая, а не научная, к сожалению». Он не думает, что два подхода конфликтуют: «Я всегда считал струнную теорию и ПКГ частями одного описания. ПКГ это метод, а не теория. Это метод размышления над квантовой механикой и геометрией. Это метод, который струнные теоретики могут использовать, и уже используют. Эти вещи не исключают друг друга».

Но не все уверены в этом Моше Розали [Moshe Rozali ], струнный теоретик из Университета Британской Колумбии, сохраняет скептицизм по поводу ПКГ: «Я не работаю над ПКГ потому, что у неё есть проблемы с СТО,- говорит он. – Если ваш подход с самого начала без уважения относится к симметриям в СТО, вам потребуется чудо на одном из промежуточных шагов». Тем не менее, по словам Розали, некоторые математические инструменты, пришедшие из ПКГ, могут пригодиться. «Не думаю, что существует возможность объединения ПКГ и струнной теории. Но людям обычно нужны методы, и в этом смысле они похожи. Математические методы могут пересекаться».

Также и не все приверженцы ПКГ ждут слияния двух теорий. Карло Ровелли , физик из Марсельского университета и основатель теории ПКГ верит в преобладание своей теории. «Сообщество любителей струн уже не такое заносчивое, как десять лет назад, особенно после жестокого разочарования отсутствием суперсимметричных частиц ,- говорит он. – Возможно, что две теории могут быть частями одного решения… но я думаю, вряд ли. По-моему, струнная теория не смогла дать то, что она обещала в 80-х годах, и представляет собою одну из тех идей, что выглядят симпатично, но не описывают реальный мир, которых в истории науки было полно. Не понимаю, как люди ещё могут возлагать на неё надежды».

Пуллин же считает, что объявлять победу преждевременно: «Приверженцы ПКГ говорят, что их теория единственно верна. Я под этим не подпишусь. Мне кажется, что обе теории чрезвычайно неполны».



«Within three pages, Sir Isaac Newton was explaining the law of gravitation to Mistress Gwyn, who had already hinted that she would like to do something in return

(A. Clarke, A Fall of Moondust )

Разумеется, я не могу оставить полностью непрокомментированной статью A. Sen «Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions» , о которой я узнал благодаря сайту Любоша Мотла , я постараюсь писать о том, о чём ЛМ не написал:) Помимо того статья интересна тем, что представляет результаты логарифмических петлевых поправок к формуле Бекенштейна - Хокинга для энтропии чёрной дыры

$$S=\frac{A}{4}\,$$

которые я не буду обсуждать, она также предъявляет полезное сравнение этих результатов с таковыми, полученными в области сомнительной деятельности, называемой петлевой квантовой гравитацией. Результат сравнения показывает, что петлевая квантовая гравитация предсказывает неверную логарифмическую поправку к формуле Бекенштейна - Хокинга. Вспоминая то, с каким подгоном даже формула Бекенштейна - Хокинга выводится в петлевой квантовой гравитации, можно смело утверждать, что петлевая квантовая гравитация - неправильная конструкция.

В целом, рассуждения проводятся следующим образом. Вы рассматриваете общее решение чёрной дыры в некотором пространстве времени. Чёрная дыра обладает массой M , зарядом Q , и угловым моментом J . Двум последним канонически сопряжены химический потенциал μ и угловая скорость вращения чёрной дыры ω . Можете считать, что у вас есть несколько зарядов и несколько хим-потенциалов, это непринципиально. Термодинамический потенциал даётся формулой

$$\Omega =E-TS+\omega J+\mu Q\,$$

где T = 1/β есть температура чёрной дыры.

Евклидова квантовая гравитация описывается функциональным интегралом,

$$Z(\beta,\,\omega,\,\mu)=\int D\Psi e^{-S_E[\Psi]}\,$$

где Ψ обозначает все присутствующие поля.

Но, с другой стороны, функциональный интеграл даёт выражение для большой статистической суммы, из которой можно посчитать термодинамический потенциал:

$$\Omega=-T\log Z\,.$$

В результате получаем формулу для энтропии чёрной дыры:

$$S(M,\,J,\,Q)=\log Z+\beta (M+\omega J+\mu Q)\,.$$

В классической гравитации Z это просто потенцированное с обратным знаком классическое действие, посчитанное на полях, удовлетворяющих классическим уравнениям движения,

$$Z_{cl}(\beta,\,\omega,\,\mu)= e^{-S_{cl}[\Psi_{cl}]}\,.$$

Далее, квантовые эффекты, учитывающие петли, меняют этот результат, в результате чего энтропия тоже получает поправки. Ведущая поправка оказывается пропорциональной площади горизонта чёрной дыры. Важен коэффициент. На примере чёрной дыры Шварцшильда: если a - это радиус чёрной дыры в единицах планковской длины, то поправка к энтропии в однопетлевом приближении равна

$$\Delta S\simeq 1.71\log a\,.$$

Петлевая квантовая гравитация предсказывает

$$\Delta S\simeq -2\log a\,.$$

Это совершенно разные результаты.

Пространства определённым способом соединены друг с другом, так что на малых масштабах времени и длины они создают пёструю, дискретную структуру пространства, а на больших масштабах плавно переходят в непрерывное гладкое пространство-время .

Петлевая гравитация и физика элементарных частиц

Одним из преимуществ петлевой квантовой теории гравитации является естественность, с которой в ней получает своё объяснение Стандартная модель физики элементарных частиц.

Таким образом, Бильсон-Томпсон с соавторами предположили, что теория петлевой квантовой гравитации может воспроизвести Стандартную модель, автоматически объединяя все четыре фундаментальных взаимодействия . При этом с помощью преонов, представленных в виде брэдов (переплетений волокнистого пространства-времени) удалось построить успешную модель первого поколения фундаментальных фермионов (кварков и лептонов) с более-менее правильным воспроизведением их зарядов и четностей .

В исходной статье Бильсона-Томпсона предполагалось, что фундаментальные фермионы второго и третьего поколений могут быть представлены в виде более сложных брэдов, а фермионы первого поколения представляются простейшими из возможных брэдов, хотя конкретных представлений сложных брэдов не давалось. Считается, что электрический и цветовой заряды, а также чётность частиц, принадлежащих к поколениям более высокого ранга, должны получаться точно таким же образом, как и для частиц первого поколения. Использование методов квантовых вычислений позволило показать, что такого рода частицы устойчивы и не распадаются под действием квантовых флуктуаций .

Ленточные структуры в модели Бильсона-Томпсона представлены в виде сущностей, состоящих из той же материи, что и само пространство-время . Хотя в статьях Бильсона-Томпсона и показано, как из этих структур можно получить фермионы и бозоны , вопрос о том, как с помощью брэдинга можно было бы получить бозон Хиггса , в них не обсуждается.

Л. Фрейдель (L. Freidel ), Дж. Ковальский-Гликман (J. Kowalski-Glikman ) и А. Стародубцев в своей статье 2006 года высказали предположение, что элементарные частицы можно представить с помощью линий Вильсона гравитационного поля, подразумевая, что свойства частиц (их массы, энергии и спины) могут соответствовать свойствам петель Вильсона - базовым объектам теории петлевой квантовой гравитации. Эту работу можно рассматривать в качестве дополнительной теоретической поддержки преонной модели Бильсона-Томпсона .

Используя формализм модели спиновой пены , имеющей непосредственное отношение к теории петлевой квантовой гравитации, и базируясь лишь на исходных принципах последней, можно также воспроизвести и некоторые другие частицы Стандартной модели, такие как фотоны , глюоны и гравитоны - независимо от схемы брэдов Бильсона-Томпсона для фермионов. Однако, по состоянию на 2006 год, с помощью этого формализма пока не удалось построить модели гелонов. В модели гелонов отсутствуют брэды, которые можно было бы использовать для построения бозона Хиггса, но в принципе данная модель не отрицает возможности существования этого бозона в виде некоей композитной системы. Бильсон-Томпсон отмечает, что, поскольку частицы с бо́льшими массами в основном имеют более сложную внутреннюю структуру (учитывая также перекручивание брэдов), то эта структура возможно имеет отношение к механизму формирования массы. Например, в модели Бильсона-Томпсона структура фотона, имеющего нулевую массу, соответствует неперекрученным брэдам. Правда, пока остается неясным, соответствует ли модель фотона, полученная в рамках формализма спиновой пены , фотону Бильсона-Томпсона, который в его модели состоит из трех незакрученных риббонов (возможно, что в рамках формализма спиновой пены можно построить несколько вариантов модели фотона).

Первоначально понятие «преон» использовалось для обозначения точечных субчастиц, входящих в структуру фермионов с половинным спином (лептонов и кварков). Как уже упоминалось, использование точечных частиц приводит к парадоксу массы. В модели Бильсона-Томпсона риббоны не являются «классическими» точечными структурами. Бильсон-Томпсон использует термин «преон» для сохранения преемственности в терминологии, но обозначает с помощью этого термина более широкий класс объектов, являющихся компонентами структуры кварков, лептонов и калибровочных бозонов.

Важным для понимания подхода Бильсона-Томпсона является то, что в его преонной модели элементарные частицы, такие как электрон , описываются в терминах волновых функций. Сумма квантовых состояний спиновой пены, имеющих когерентные фазы, также описывается в терминах волновой функции. Поэтому возможно, что с помощью формализма спиновой пены можно получить волновые функции, соответствующие элементарным частицам (фотонам и электронам). В настоящее время объединение теории элементарных частиц с теорией петлевой квантовой гравитации является весьма активной областью исследований .

В октябре 2006 г. Бильсон-Томпсон модифицировал свою статью , отмечая, что, хотя его модель и была инспирирована преонными моделями, но она не является преонной в строгом смысле этого слова, поэтому топологические диаграммы из его преонной модели скорее всего можно использовать и в других фундаментальных теориях, таких как, например, М-теория . Теоретические ограничения, накладываемые на преонные модели, неприменимы к его модели, поскольку в ней свойства элементарных частиц возникают не из свойств субчастиц, а из связей этих субчастиц друг с другом (брэдов). Одной из возможностей является, например, «встраивание» преонов в М-теорию или в теорию петлевой квантовой гравитации.

Сабина Хоссенфельдер предложила рассматривать двух альтернативных претендентов на «теорию всего» - теорию струн и петлевую квантовую гравитацию как стороны одной медали. Чтобы петлевая квантовая гравитация не противоречила специальной теории относительности, в ней необходимо ввести взаимодействия, которые похожи на рассматриваемые в теории струн. .

Проблемы теории

В модифицированной версии своей статьи Бильсон-Томпсон признает, что нерешенными проблемами в его модели остаются спектр масс частиц, спины , смешивание Кабиббо , а также необходимость привязки его модели к более фундаментальным теориям.

В более позднем варианте статьи описывается динамика брэдов с помощью переходов Пачнера (англ. Pachner moves ).

См. также

Источники

  • , «Элементы большой науки»

Напишите отзыв о статье "Петлевая квантовая гравитация"

Литература

  • Lee Smolin, Three Roads to Quantum Gravity , Basic Books, 2001.
  • John Baez, The Quantum of Area? , Nature, vol.421, pp. 702–703; February 2003.
  • Lee Smolin, , arxiv.org/hep-th/0303185.
  • Welcome to Quantum Gravity. Special Section, Physics World, Vol.16, No.11, pp. 27–50; November 2003.
  • Олег Фейгин. . - М .: Эксмо, 2012. - 288 с. - (Тайны мироздания). - 3000 экз. - ISBN 9785699530168 .

Примечания

Теории гравитации
Стандартные теории гравитации Альтернативные теории гравитации Квантовые теории гравитации Единые теории поля
Классическая физика
  • Общая теория относительности
    - Математическая формулировка общей теории относительности
    - Гамильтонова формулировка общей теории относительности

Принципы

  • Геометродинамика (англ. )
Классические

Релятивистские

  • Петлевая квантовая гравитация
  • Полуклассическая гравитация (англ. )
  • Причинная динамическая триангуляция (англ. )
  • Уравнение Уилера - Девитта (англ. )
  • Индуцированная гравитация (англ. )
  • Некоммутативная геометрия (англ. )
Многомерные
  • Общая теория относительности в многомерном пространстве

Струнные

  • Теория струн

Прочие

Отрывок, характеризующий Петлевая квантовая гравитация

В Лысых Горах, имении князя Николая Андреевича Болконского, ожидали с каждым днем приезда молодого князя Андрея с княгиней; но ожидание не нарушало стройного порядка, по которому шла жизнь в доме старого князя. Генерал аншеф князь Николай Андреевич, по прозванию в обществе le roi de Prusse, [король прусский,] с того времени, как при Павле был сослан в деревню, жил безвыездно в своих Лысых Горах с дочерью, княжною Марьей, и при ней компаньонкой, m lle Bourienne. [мадмуазель Бурьен.] И в новое царствование, хотя ему и был разрешен въезд в столицы, он также продолжал безвыездно жить в деревне, говоря, что ежели кому его нужно, то тот и от Москвы полтораста верст доедет до Лысых Гор, а что ему никого и ничего не нужно. Он говорил, что есть только два источника людских пороков: праздность и суеверие, и что есть только две добродетели: деятельность и ум. Он сам занимался воспитанием своей дочери и, чтобы развивать в ней обе главные добродетели, до двадцати лет давал ей уроки алгебры и геометрии и распределял всю ее жизнь в беспрерывных занятиях. Сам он постоянно был занят то писанием своих мемуаров, то выкладками из высшей математики, то точением табакерок на станке, то работой в саду и наблюдением над постройками, которые не прекращались в его имении. Так как главное условие для деятельности есть порядок, то и порядок в его образе жизни был доведен до последней степени точности. Его выходы к столу совершались при одних и тех же неизменных условиях, и не только в один и тот же час, но и минуту. С людьми, окружавшими его, от дочери до слуг, князь был резок и неизменно требователен, и потому, не быв жестоким, он возбуждал к себе страх и почтительность, каких не легко мог бы добиться самый жестокий человек. Несмотря на то, что он был в отставке и не имел теперь никакого значения в государственных делах, каждый начальник той губернии, где было имение князя, считал своим долгом являться к нему и точно так же, как архитектор, садовник или княжна Марья, дожидался назначенного часа выхода князя в высокой официантской. И каждый в этой официантской испытывал то же чувство почтительности и даже страха, в то время как отворялась громадно высокая дверь кабинета и показывалась в напудренном парике невысокая фигурка старика, с маленькими сухими ручками и серыми висячими бровями, иногда, как он насупливался, застилавшими блеск умных и точно молодых блестящих глаз.
В день приезда молодых, утром, по обыкновению, княжна Марья в урочный час входила для утреннего приветствия в официантскую и со страхом крестилась и читала внутренно молитву. Каждый день она входила и каждый день молилась о том, чтобы это ежедневное свидание сошло благополучно.
Сидевший в официантской пудреный старик слуга тихим движением встал и шопотом доложил: «Пожалуйте».
Из за двери слышались равномерные звуки станка. Княжна робко потянула за легко и плавно отворяющуюся дверь и остановилась у входа. Князь работал за станком и, оглянувшись, продолжал свое дело.
Огромный кабинет был наполнен вещами, очевидно, беспрестанно употребляемыми. Большой стол, на котором лежали книги и планы, высокие стеклянные шкафы библиотеки с ключами в дверцах, высокий стол для писания в стоячем положении, на котором лежала открытая тетрадь, токарный станок, с разложенными инструментами и с рассыпанными кругом стружками, – всё выказывало постоянную, разнообразную и порядочную деятельность. По движениям небольшой ноги, обутой в татарский, шитый серебром, сапожок, по твердому налеганию жилистой, сухощавой руки видна была в князе еще упорная и много выдерживающая сила свежей старости. Сделав несколько кругов, он снял ногу с педали станка, обтер стамеску, кинул ее в кожаный карман, приделанный к станку, и, подойдя к столу, подозвал дочь. Он никогда не благословлял своих детей и только, подставив ей щетинистую, еще небритую нынче щеку, сказал, строго и вместе с тем внимательно нежно оглядев ее:
– Здорова?… ну, так садись!
Он взял тетрадь геометрии, писанную его рукой, и подвинул ногой свое кресло.
– На завтра! – сказал он, быстро отыскивая страницу и от параграфа до другого отмечая жестким ногтем.
Княжна пригнулась к столу над тетрадью.
– Постой, письмо тебе, – вдруг сказал старик, доставая из приделанного над столом кармана конверт, надписанный женскою рукой, и кидая его на стол.
Лицо княжны покрылось красными пятнами при виде письма. Она торопливо взяла его и пригнулась к нему.
– От Элоизы? – спросил князь, холодною улыбкой выказывая еще крепкие и желтоватые зубы.
– Да, от Жюли, – сказала княжна, робко взглядывая и робко улыбаясь.
– Еще два письма пропущу, а третье прочту, – строго сказал князь, – боюсь, много вздору пишете. Третье прочту.
– Прочтите хоть это, mon pere, [батюшка,] – отвечала княжна, краснея еще более и подавая ему письмо.
– Третье, я сказал, третье, – коротко крикнул князь, отталкивая письмо, и, облокотившись на стол, пододвинул тетрадь с чертежами геометрии.
– Ну, сударыня, – начал старик, пригнувшись близко к дочери над тетрадью и положив одну руку на спинку кресла, на котором сидела княжна, так что княжна чувствовала себя со всех сторон окруженною тем табачным и старчески едким запахом отца, который она так давно знала. – Ну, сударыня, треугольники эти подобны; изволишь видеть, угол abc…
Княжна испуганно взглядывала на близко от нее блестящие глаза отца; красные пятна переливались по ее лицу, и видно было, что она ничего не понимает и так боится, что страх помешает ей понять все дальнейшие толкования отца, как бы ясны они ни были. Виноват ли был учитель или виновата была ученица, но каждый день повторялось одно и то же: у княжны мутилось в глазах, она ничего не видела, не слышала, только чувствовала близко подле себя сухое лицо строгого отца, чувствовала его дыхание и запах и только думала о том, как бы ей уйти поскорее из кабинета и у себя на просторе понять задачу.
Старик выходил из себя: с грохотом отодвигал и придвигал кресло, на котором сам сидел, делал усилия над собой, чтобы не разгорячиться, и почти всякий раз горячился, бранился, а иногда швырял тетрадью.
Княжна ошиблась ответом.
– Ну, как же не дура! – крикнул князь, оттолкнув тетрадь и быстро отвернувшись, но тотчас же встал, прошелся, дотронулся руками до волос княжны и снова сел.
Он придвинулся и продолжал толкование.
– Нельзя, княжна, нельзя, – сказал он, когда княжна, взяв и закрыв тетрадь с заданными уроками, уже готовилась уходить, – математика великое дело, моя сударыня. А чтобы ты была похожа на наших глупых барынь, я не хочу. Стерпится слюбится. – Он потрепал ее рукой по щеке. – Дурь из головы выскочит.
Она хотела выйти, он остановил ее жестом и достал с высокого стола новую неразрезанную книгу.
– Вот еще какой то Ключ таинства тебе твоя Элоиза посылает. Религиозная. А я ни в чью веру не вмешиваюсь… Просмотрел. Возьми. Ну, ступай, ступай!
Он потрепал ее по плечу и сам запер за нею дверь.
Княжна Марья возвратилась в свою комнату с грустным, испуганным выражением, которое редко покидало ее и делало ее некрасивое, болезненное лицо еще более некрасивым, села за свой письменный стол, уставленный миниатюрными портретами и заваленный тетрадями и книгами. Княжна была столь же беспорядочная, как отец ее порядочен. Она положила тетрадь геометрии и нетерпеливо распечатала письмо. Письмо было от ближайшего с детства друга княжны; друг этот была та самая Жюли Карагина, которая была на именинах у Ростовых:
Жюли писала:
«Chere et excellente amie, quelle chose terrible et effrayante que l"absence! J"ai beau me dire que la moitie de mon existence et de mon bonheur est en vous, que malgre la distance qui nous separe, nos coeurs sont unis par des liens indissolubles; le mien se revolte contre la destinee, et je ne puis, malgre les plaisirs et les distractions qui m"entourent, vaincre une certaine tristesse cachee que je ressens au fond du coeur depuis notre separation. Pourquoi ne sommes nous pas reunies, comme cet ete dans votre grand cabinet sur le canape bleu, le canape a confidences? Pourquoi ne puis je, comme il y a trois mois, puiser de nouvelles forces morales dans votre regard si doux, si calme et si penetrant, regard que j"aimais tant et que je crois voir devant moi, quand je vous ecris».
[Милый и бесценный друг, какая страшная и ужасная вещь разлука! Сколько ни твержу себе, что половина моего существования и моего счастия в вас, что, несмотря на расстояние, которое нас разлучает, сердца наши соединены неразрывными узами, мое сердце возмущается против судьбы, и, несмотря на удовольствия и рассеяния, которые меня окружают, я не могу подавить некоторую скрытую грусть, которую испытываю в глубине сердца со времени нашей разлуки. Отчего мы не вместе, как в прошлое лето, в вашем большом кабинете, на голубом диване, на диване «признаний»? Отчего я не могу, как три месяца тому назад, почерпать новые нравственные силы в вашем взгляде, кротком, спокойном и проницательном, который я так любила и который я вижу перед собой в ту минуту, как пишу вам?]
Прочтя до этого места, княжна Марья вздохнула и оглянулась в трюмо, которое стояло направо от нее. Зеркало отразило некрасивое слабое тело и худое лицо. Глаза, всегда грустные, теперь особенно безнадежно смотрели на себя в зеркало. «Она мне льстит», подумала княжна, отвернулась и продолжала читать. Жюли, однако, не льстила своему другу: действительно, и глаза княжны, большие, глубокие и лучистые (как будто лучи теплого света иногда снопами выходили из них), были так хороши, что очень часто, несмотря на некрасивость всего лица, глаза эти делались привлекательнее красоты. Но княжна никогда не видала хорошего выражения своих глаз, того выражения, которое они принимали в те минуты, когда она не думала о себе. Как и у всех людей, лицо ее принимало натянуто неестественное, дурное выражение, как скоро она смотрелась в зеркало. Она продолжала читать: 211

error: