Автоматизация и диспетчеризация инженерных систем. Системы диспетчеризации инженерного оборудования Соблюдаемые стандарты и нормы

Постановление Правительства РФ от 16.02.2008 г. № 87 (ред. от 07.07.2017 г.) «О составе разделов проектной документации и требованиях к их содержанию», пункт 19. Подраздел «Отопление, вентиляция и кондиционирование воздуха, тепловые сети» гласит, что в проекте должны быть указаны описания систем автоматизации и диспетчеризация процесса регулирования отопления, вентиляции и кондиционирования воздуха.

В этой связи наша компания предлагает услуги комплексного проектирования автоматизации и диспетчеризации инженерных систем. Здесь мы предлагаем обратить внимание на ряд ключевых моментов процесса проектирования.

О проектировании собственной автоматики инженерных систем

Мы выполняем проектирование собственной автоматики инженерных систем, то есть нами проектируются устройства управления, которые устанавливаются на инженерном оборудовании или размещаются рядом с ним локально в каждой инженерной системе - это и есть собственная автоматика систем и самый низший уровень автоматизации.

Ниже показан пример выполненного монтажа собственной автоматики системы отопления в коллекторном шкафу:

Установленная автоматика инженерных систем выполняет функции управления вне зависимости от исправности и работоспособности вышестоящей над ними системы управления, если такая существует на объекте (речь идет о системе «Умный дом», как любят её называть маркетологи).

Решения для автоматизации инженерных систем разрабатываются при проектировании данных систем и размещаются именно в этом проекте в виде схем и описаний.


К примеру, в эту пояснительную записку проекта отопления включено описание решений по автоматизации радиаторного, напольного отопления и котельной.

В проекте автоматики представлены схемы подключения сервоприводов, датчиков, терморегуляторов, контроллеров и климатического оборудования.




Решения по автоматизации в проектах не содержат сведений о прокладке кабелей собственной автоматики

Автоматика каждой системы включает десятки и даже сотни различных устройств, включенных в автоматику системы управления, которые связываются между собой линиями управления, то есть слаботочными кабелями.




К каждому термоэлектрическому приводу отопления в этих шкафах идут слаботочные кабели (это такие белые провода)



Если объект имеет большие по площади размеры, то оснащение его инженерными системами с собственной автоматикой требует серьезного подхода к проектированию. Здесь нужно акцентировать внимание на деталях каждого проекта инженерной системы, оборудованной автоматикой управления, так как система может быть спроектирована правильно, оборудование автоматики также будет указано в проекте в форме схем и описаний, но проектирование связей (слаботочных кабелей) между этими устройствами управления и инженерным оборудованием может быть не в полной мере и не должным образом отражено в существующих проектах инженерных систем для выполнения качественного монтажа автоматизированного инженерного комплекса.




О проектировании сетей автоматизации и диспетчеризации

Дело в том, что в проектах инженерных систем внимание сконцентрировано на проектировании инженерного оборудования. Автоматика в данных проектах является одним из элементов создаваемой системы (занимает один из разделов проекта ОВК и ВК), а линии и кабели этой автоматики, тянущиеся по всему зданию - это, вообще, дело десятое. Часто эти слаботочные кабели прокладывают сами инженеры, которые занимаются автоматикой, пуском и наладкой инженерных систем на основании схем автоматизации оборудования из проектов.


И в этом случае иногда возникают сложности, когда автоматика и различные элементы оборудования располагаются в разных концах здания: не ясно, как проложить кабели, где их можно вывести, как учесть расположение, подключение и т. д.

В общем, слаботочные кабели собственной автоматики инженерных систем также требуют к себе пристального внимания проектировщиков, строителей и монтажников для обеспечения высокого качества проектных и монтажных работ.

Кабели автоматики должны быть проложены правильно с соблюдением определенных условий, они должны быть увязаны с другими коммуникациями, эти слаботочные сети должны быть проложены вовремя (до отделки) и так далее, то есть для выполнения работ с высоким качеством потребуется разработка проекта сети автоматизации и диспетчеризации инженерных систем.

Проект сети автоматизации и диспетчеризации ≠ проект системы управления

Заостряем внимание, что проект сети автоматизации и диспетчеризации содержит информацию именно о кабелях низовой автоматики (собственной автоматики) инженерных систем. Не следует путать проект этой сети с проектом системы управления (она же система «Умный дом»), так как проект системы управления (или системы «Умный дом») - это аппаратная и программная надстройка, которая позволяет управлять всеми инженерными системами, то есть это верхний уровень автоматизации, которого, кстати, может и не быть, если заказчик откажется от его реализации, но это не значит, что все другие инженерные системы не будут работать.

На заметку: без системы управления или в случае ее отказа (она же система «Умный дом») автоматика будет работать локально в каждой инженерной системе.

Если проекта сети автоматизации и диспетчеризации нет

Заказчик может отказаться от проектирования сети автоматизации и диспетчеризации, в этом случае слаботочных кабелей связи между устройствами управления и оборудованием в проекте просто не будет, что потребуется учитывать тем монтажникам, которые будут заниматься автоматикой систем, чтобы проложить их на основании схем разделов автоматизации инженерных систем.

Мы предлагаем не перекладывать бремя стыковки локальной автоматики управления в системах на монтажников. Кабельные трассы низовой автоматики нужно проектировать.


Ключевые особенности проектирования автоматизации и диспетчеризации

При проектировании мы не подменяем штатную автоматику инженерных систем, поэтому вся автоматизация строится на 2-х уровневом принципе, низовой (локальной) и верхней (общей) автоматизации, которая находит свое отражение в 3-х проектах:

    Низовой уровень:
  1. Разделы автоматизации и диспетчеризации в самих проектах инженерных систем содержат информацию о собственной автоматизации этих инженерных систем, для целей обеспечения их работоспособности и возможностей дальнейшей диспетчеризации и подключения к верхнему уровню автоматизации.
  2. Проект сети автоматизации и диспетчеризации включает разработку проекта кабельных трасс под задачи предыдущего пункта.
  3. Верхний уровень: проект системы управления - в этом проекте разрабатывается всё, что относится к общей автоматизации комплекса систем.

Низовая автоматика может работать отдельно без верхнего уровня и системы управления, а вот если их объединить (к примеру, для управления использовать не локальные контроллеры инженерных систем Conductor Swegon, а главный контроллер AMX или Crestron), такого не произойдет. Если главный контроллер выйдет из строя, то управление нарушится во всех системах.

Особенность проектирования системы электроснабжения и освещения

Особенность проектирования сети автоматизации и диспетчеризации для системы электроснабжения и освещения заключается в необходимости учета коэффициента сложности, так как под схему «звезда» и «классическую» проекты существенным образом отличаются по объему работ.

В схеме «звезда» кабелей больше - проект сложнее

В проекте сети автоматизации и диспетчеризации системы электроснабжения и освещения по схеме «звезда» кабелей значительно больше, электрические щиты сложнее и крупнее, других вопросов проектирования также больше.

Схема «звезда» - для системы управления

В проекте сети автоматизации и диспетчеризации системы электроснабжения и освещения по схеме «звезда» наша компания закладывает все необходимые решения под автоматизацию и диспетчеризацию в самой сути проекта, а не каким-то отдельным разделом (как в ОВК и ВК), и система управления уже использует или не использует эти решения в своем проекте.

И набор библиотечных элементов проекта, реализующих типовые объекты ЖКХ, позволяют «собирать» системы диспетчеризации из готовых компонентов. Данная разработка позволяет резко упростить создание проектов и на порядок сократить сроки их разработки.

Себестоимость и сроки реализации проектов диспетчеризации оказывают все большее влияние на принятие решений по выбору инструментов для их реализации. Лишние затраты особенно болезненны в ситуации всеобщего секвестра бюджетов, а сроки иногда горят по той же причине – поздно выделяют средства на приобретение комплектации и оплату работ. Не секрет, что в последние годы значительная часть затрат в большинстве проектов приходится на оплату труда разработчиков. Специалистов мало, стоят они не очень дешево. В такой ситуации велик соблазн использовать специализированные системы. Но все, кто пытался идти этим путем, уже в курсе, что он приводит к слишком жесткой системе, не полностью учитывающей локальные особенности и потребности. В результате эффект от ее внедрения во многом сводится на нет. Так что же делать, тратить дефицитные и дорогие силы разработчиков и создавать систему «с нуля» на базе универсальной SCADA-системы?

К счастью, есть и золотая середина. Ее предлагает на базе своей широко распространенной в ЖКХ по всей территории РФ системы и набора типовых элементов проекта. основана на объектной идеологии, поэтому каждый такой элемент проекта полностью реализует типовой объект ЖКХ, включая перечень опрашиваемых и управляемых параметров, их архивы и сообщения, алгоритмы обработки и мнемосхемы, окна управления и отчеты, графики изменения параметров и журналы событий.

Среди типовых объектов:

Индивидуальные тепловые пункты (ИТП);

Газорегуляторные пункты;

Насосные всех видов (водопроводные, канализационные, пожарные, ливневые);

Вентиляционные установки;

Трансформаторные подстанции;

Резервное энергоснабжение (АВР и ДГУ);

Квартирный и домовой учет ресурсов.




Рис. Автоматически конфигурируемая мнемосхема типовой вентустановки

Наряду с библиотекой объектов ЖКХ в есть и полный комплект элементов проекта, необходимый для создания АСКУЭ (АСКУТЭ, АИИС КУЭ): это все требуемые формы отчетности, а также OPC-серверы для большинства распространенных типов счетчиков, например «Меркурий», СЭТ‑4 и др.

Как создается проект из библиотечных типовых объектов?

Для «специализированных» систем (только вентустановки или только ИТП) проект можно просто сгенерировать. Для этого надо задать код состава оборудования. Идея позаимствована из программного продукта SM Constructor, с помощью которого компания Segnetics (г. Санкт-Петербург) конфигурирует свои контроллеры для управления вентиляционными установками и ИТП. Но если там код является результатом конфигурирования, который может быть сразу введен в , то при использовании контроллеров других типов, например Regin, надо проставить «галочки» в опросном листе в файле Excel. Они автоматически суммируются и дают искомый код. На базе этого кода формируется не только состав проекта и связи проектных объектов с установленными контроллерами, но и внешний вид мнемосхем оборудования – неиспользуемые элементы просто отключаются из пользовательского интерфейса. Типовые объекты вентустановок или ИТП могут быть поставлены в открытом (с возможностью их редактирования) или закрытом виде. В последнем случае доступны только «клеммники» объектов для установления связей с оборудованием.

Для систем поквартирного учета ресурсов, которые практически не требуют настройки своего состава, используется другой подход. В проект включены объекты «дом», «подъезд», «этаж», «квартиры», а также сценарий (скрипт), который надо запустить в режиме разработки после того, как для каждого дома будет задано количество подъездов, этажей и квартир на этаже. Проект, включая обзорную мнемосхему, обеспечивающую навигацию по дому, будет сгенерирован полностью автоматически. Важно отметить, что сам скрипт (на языке С#) доступен в редакторе, встроенном в интегрированную среду , в абсолютно открытом виде и может быть изменен для учета особенностей конкретного проекта.




Рис. Генерация проекта поквартирного учета ресурсов с помощью скрипта

Теперь рассмотрим случай, когда в проекте есть объекты самых разных типов. Каждый из них вставляется из библиотеки как единое целое. Для того чтобы реализовать проект, остается выполнить две операции: привязку к оборудованию и размножение объекта данного типа в необходимых количествах. Привязка не вызывает проблем даже у начинающих «автоматизаторов». Дело в том, что уже упомянутый механизм «клеммников» объектов понятен на интуитивном уровне, и перетягивание входов/выходов контроллеров на эти клеммники – дело нескольких минут. Но это несколько минут на один объект. А если их много? В случае если объекты типовые, достаточно будет потратить всего пару дополнительных минут на задействование механизма вызываемых объектов. В проекте так и останется один образцовый объект этого типа, но после задания количества его экземпляров будет автоматически сгенерирован их список и связи каждого экземпляра с оборудованием. Разумеется, переименовать конкретный экземпляр или изменить его связи можно за­тем при необходимости и вручную. В режиме исполнения можно будет вызвать документ отдельного экземпляра из их полного списка.

Мы рассмотрели ситуацию со строго однотипными объектами. Что же делать в ситуации, когда они имеют некоторые различия? В этом случае на помощь приходит другой механизм – шаблон-экземпляр. Типовой библиотечный элемент выступает в качестве шаблона, а размноженные в проекте экземпляры в точности его повторяют, не теряя связи с оригиналом. Мы можем отредактировать любой из них, просмотреть все отличия экземпляров от шаблона, а при изменении шаблона применить эти изменения во всех или в выбранных экземплярах.




Рис. Синхронизация объектов с шаблоном

Как же в случае разнотипных объектов создается обзорная, как правило, стартовая мнемосхема? В данном случае, вероятно, нецелесообразно писать «одноразовый» скрипт. предоставляет разработчику проекта на выбор два основных механизма – кнопка объекта и символ объекта. Проектный объект просто перетаскивается на обзорную мнемосхему, и на ней по выбору разработчика либо создается кнопка со сжатым статическим изображением мнемосхемы объекта, либо «вклеивается» изображение с принадлежащими конкретному экземпляру данными – символ типового объекта, созданный его ав­тором. И в том, и в другом варианте, кроме визуального представления объекта, есть возможность щелчком мыши по кнопке или символу вызывать его мнемосхему или любой иной имеющийся у объекта документ, например журнал сообщений или отчет о расходе ресурсов.

Система диспетчеризации позволяет удаленно собирать и хранить данные о производственных процессах или работе технологического оборудования зданий, обо всех протекающих процессах и нештатных ситуациях, а также удаленно задавать режимы работы оборудования.

Система диспетчеризации и мониторинга инженерных систем

Система диспетчеризации представляет собой централизованный пульт управления, на который выводятся данные о работе всех инженерных систем здания. С его помощью можно также управлять всем установленным в здании технологическим оборудованием, находясь в диспетчерском пункте.

На пульт диспетчера возможно выводить данные со следующих систем: вентиляции, кондиционирования и холодоснабжения, теплоснабжения и отопления, водоснабжения и канализации, освещения и электроснабжения, эскалаторов и лифтов, систем безопасности, пожарной сигнализации и противопожарной автоматики, систем управления звуком и т.п.

Системы диспетчеризации могут решать ряд различных задач, в зависимости от режима работы здания или условий конкретного производства:

  • собирать данные о работе оборудования и визуально отображать все происходящие процессы;
  • своевременно выявлять нештатные ситуации и предотвращать аварии, отправлять ответственным лицам тревожные сообщения;
  • дистанционно управлять приборами, собирать и хранить их показания;
  • вести отчет об энергопотреблении;
  • при необходимости, представлять собранные данные в виде таблиц или графиков, передавать их на удаленные пульты, имеющие более высокий приоритет.

Преимущества использования системы мониторинга: она позволяет постоянно контролировать работу всех инженерных систем здания, оперативно реагировать в случае аварий, уменьшить влияние человеческого фактора на работу автоматики, а также оптимизировать документооборот и отчетность.

Проектирование систем диспетчеризации – сложный и трудоемкий процесс, требующий грамотного подхода от исполнителей. Правильно составленный проект влияет на то, насколько качественно будут работать все инженерные узлы здания, а значит – является важнейшим условием для того, чтобы строительный объект мог быть введен в эксплуатацию.

Процесс
проектирования

Компания «КСВ проект» выполняет проектирование систем диспетчеризации любой сложности в соответствии со всеми требованиями к разработке проектной документации, а также индивидуальными пожеланиями Заказчика. Норматив проектирования:

  • ГОСТ Р 51241-2008 "Средства и системы контроля и управления доступом. Классификация. Общие технические требования. Методы испытаний".
  • ГОСТ Р 51558-2014 "Средства и системы охранные телевизионные. Классификация. Общие технические требования. Методы испытаний".
  • ГОСТ Р 53246-2008 "Информационные технологии. Системы кабельные структурированные. Проектирование основных узлов системы. Общие требования".

Технико-экономические изыскания

Чтобы проект максимально соответствовал целям и задачам Заказчика, перед началом разработки необходимо выполнить ряд подготовительных работ. Информация, которую Заказчик должен предоставить:

  • План или эскиз микрорайона или промышленного объекта. На нем необходимо указать, какие здания входят в диспетчеризацию, какое расстояние между ними, где расположен диспетчерский пункт, есть ли препятствия для беспроводной связи (если она необходима).
  • Подробное описание объектов с указанием мест, где располагаются тепловые пункты, инженерное оборудование, электрощитовые, машинное помещение, учетные приборы и другое оборудование.
  • Способ прокладки кабеля внутри здания и между зданиями.
  • Тип канала между диспетчерским пунктом и объектами.
  • Функционал, который требуется от системы диспетчеризации.

На данном этапе мы также рассчитываем экономическую эффективность использования системы.

Разработка проекта

Наши специалисты полностью выполнят комплект чертежей, в котором будет отражена система автоматизации и диспетчеризации здания. В проекте обычно содержится следующая информация: общие данные, функциональные схемы диспетчеризации, структурная схема системы диспетчеризации, принципиальные электрические схемы щитов диспетчеризации, линий связи контроллеров, схемы внешних соединений, спецификации материалов, изделий и оборудования, а также, при необходимости, монтажные схемы оборудования. Также в проект входят кабельные журналы, в них указывается расположение проводок и оборудования.

Разработка проекта автоматизированного рабочего места диспетчера

В зависимости от того, насколько масштабна сама система, рабочее место диспетчера может включать в себя следующее оборудование: щит с нанесенной на него мнемосхемой (в последнее время такие системы применяют все реже и в основном на производственных предприятиях); ПК с установленной SCADA программой или системой, имеющей выход на несколько мониторов или мониторную стену; ПК, имеющий доступ к контроллеру-серверу системы по веб-интерфейсу.

Выполненные
проекты

Многолетний опыт работы «КСВ проект», штат высококвалифицированных инженеров, сотрудничество с надзорными органами позволяет нам осуществлять проектирование складов нефти, нефтепродуктов и ГСМ качественно и в сроки, предусмотренные договором.

  • 100%

    проектов получили положительное заключение вневедомственной экспертизы

  • 120

    выполненных проектов складов ГСМ и нефтебаз за 20 лет работы

  • до 30%

    снижаем затраты на энергоресурсы

  • на 30%

    сокращаем затраты на обслуживание энергосетей

  • Индивидуальный тепловой пункт мощностью 1651,46 кВт
  • Индивидуальный тепловой пункт мощностью 318 кВт
  • Индивидуальный тепловой пункт мощностью 102 кВт
  • Индивидуальный тепловой пункт мощностью 1,7 МВт
  • Блочный тепловой пункт мощностью 2008,5 кВт
  • Блочно-модульная котельная, мощностью 9 Мвт, топливо – природный газ
  • Блочно-модульная котельная, мощностью 1,4 Мвт, топливо – диатермическое масло
  • Проектирование топливного трубопровода и модульного склада дизельного топлива для котельной 5,7 МВт.
  • Разработка SCADA системы для котельной мощностью 126, 42 Гкал/час на базе InduSoft Web Studio 8.0
  • Прокладка наружного газопровода от границы земельного участка до отдельно стоящей блочно-модульной водогрейной котельной (9,05 МВт).
  • Контейнерная АЗС с резервуаром V=15 м3
  • Конденсационный теплоутилизатор для глубокой утилизации тепла уходящих дымовых газов котлов ПТВМ-120 ТЭЦ
  • Термомасляная котельная мощностью 3 МВт
  • Блочно-модульная водогрейная котельная установленной теплопроизводительностью 6 МВт и инженерные сети.
  • Энергоцентр установленной электрической мощностью 2,0МВт, тепловой мощностью 10,65МВт в две очереди строительства г. Лосино-Петровский
  • Проект реконструкции, капитального ремонта существующих и строительства новых объектов нефтебазы г. Певек
  • Проект перевооружения нефтебазы - установка четырех новых вертикальных стальных резервуаров марки РВС-5000. г. Певек

Система диспетчеризации предназначена для удалённого отображения сбора и хранения данных о работе технологического оборудования здания или производственного процесса, она передает информацию о параметрах протекающих процессов, режимах работы инженерных систем, нештатных ситуациях. Интерфейс системы диспетчеризации позволяет оператору удаленно задавать режимы работы системы в целом или отдельного оборудования.

Требование наличия систем диспетчеризации в современных зданиях определено СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий». ВСН 60-89 «Устройства связи, сигнализации и диспетчеризации инженерного оборудования жилых и общественных зданий. Нормы проектирования» - регламентирует проектирование систем диспетчеризации.

Т.о., основное назначение системы диспетчеризации - в централизации контроля и управления зданием.

Иногда возникает путаница, когда систему диспетчеризации здания определяют как систему управления зданием BMS . Это связано с тем, что в диспетчеризации применятся контроллеры и программное обеспечение SCADA систем BMS. Однако, система диспетчеризации является интерфейсной частью системы интеллектуального здания, она всего лишь выводит информацию на пульт и позволяет оператору вручную управлять частью процессов, пусть и удаленно. Алгоритмы оптимального и экономичного взаимодействия между подсистемами здания должны быть разработаны проектом автоматизации и запрограммированы в контроллерах управления, только тогда оператор освобождается от принятия большинства рутинных решений.

Система диспетчеризации не является полноценной системой автоматизации! Она выполняет функции, связанные с отображением - «диспетчерский контроль» и ручным удаленным управлением - «диспетчерское управление» инженерными системами.

Обычно, в функции системы диспетчеризации входит:

  • Сбор данных с устройств и визуальное отображение процессов, происходящих с инженерным оборудованием здания (для современных систем, используя SCADA);
  • Своевременное выявление нештатных ситуаций, предотвращение аварий;
  • Формирование и отправка тревожных сообщений ответственным лицам;
  • Дистанционное управление приборами инженерных систем;
  • Сбор и хранение показаний приборов в автоматическом или ручном режиме;
  • Представление данных в графическом и табличном виде;
  • Ведение отчётности об энергопотребление, формирование в автоматическом режиме и по запросу оператора отчетов;
  • При необходимости, передача данных на удаленный пульт более высокого приоритета.

На пульт диспетчера выводится информационный поток от следующих систем:

  • Приточной и вытяжной вентиляции;
  • Кондиционирования воздуха и холодоснабжения;
  • Отопления;
  • Теплоснабжения (ИТП или котельного оборудования);
  • Водоснабжения, водоподготовки, канализации;
  • Лифтового и эскалаторного оборудования;
  • Электроснабжения и электроосвещения;
  • Пожарной сигнализации и систем безопасности здания;
  • Систем управления звуком;
  • Противопожарной автоматики (противодымной вентиляции и пожаротушения);
  • Других систем, связанных с производством или управления процессом.

Могут выводиться параметры температуры наружного воздуха, охлаждённой воды в/от системы вентиляции, охлажденного этиленгликоля, подогретой воды отопления; значения давления охлажденной воды или этиленгликоля систем вентиляции и кондиционирования; положения регулирующих клапанов; мощности на двигателях циркуляционных насосов или вентиляторов; ; данные о засорении фильтров; сигнализация об угрозе замораживания калориферов информации о состоянии лифтов, подкрепленные видеоданными; состояния автоматических выключателей в электрощитах и т.п.

Управление оборудованием в диспетчеризации ограничивается возможностью включения определенных режимов работы, например, режим запуска системы зимой или летом, режим максимальной производительности, аварийное отключение установки, ручное переключение с основного на резервный насос и т.д. В теории, диспетчер имеет возможность управления каждым из устройств, имеющих привод, однако на практике, один человек физиологически не сможет вручную управлять большой инженерной системой.

Управление такой системой осуществляется в режиме 24/7 квалифицированным персоналом, прошедшим специализированные курсы обучения. Кроме того, для каждой системы в процессе проектирования, наладки и эксплуатации технологами разрабатываются протоколы действий при возможных нештатных ситуациях.

Возможности современных систем диспетчеризации

Современные системы диспетчеризации все чаще реализовываются на контроллерах и программном обеспечении систем BMS . Это обуславливает большое количество программных возможностей по настройке их функций. В общем случае, системы диспетчеризации должны обеспечивать:

  • Актуальную и полную картину состояния всех инженерных систем в любой момент времени;
  • Удобный и понятный графический интерфейс;
  • Быструю реакцию на аварийные ситуации;
  • Возможность выдачи аварийных сообщений на экран монитора, принтер, удаленный компьютер, мобильный телефон;
  • Регистрацию всех системных событий, что во многих случаях даёт возможность установить причину аварийной ситуации, ее виновника, а также предотвратить ее появление в дальнейшем;
  • Подключение к системе удаленно, через интернет-браузер;
  • Быструю и адекватную реакцию на изменение условий внешней среды;
  • Автоматический подсчет моточасов, наработки оборудования на отказ и предупреждение о необходимости проведения тех обслуживания и профилактики;
  • Широкие возможности по управлению системами, что позволяет сократить штат обслуживающего персонала;
  • Возможность сбора статистической информации, формирования выборок, графиков сравнения прогнозирования расходов.

Отличие системы диспетчеризации от системы автоматического управления и диспетчеризации здания (САУиД)

Основные отличия функций системы диспетчеризации инженерного оборудования и системы автоматического управления зданием видны на приведенных ниже схемах. Типовая схема диспетчеризации инженерных систем объекта

Типовая схема автоматизации и диспетчеризации инженерных систем объекта (синонимы: BMS, интеллектуальное здание)

Таким образом, подсистема диспетчеризации является только частью системы управления зданием BMS .

Оборудование и программное обеспечение систем диспетчеризации

Задача диспетчеризации - отображение информации и предоставление возможности управления, следовательно, основными элементами системы диспетчеризации является программное обеспечение оператора и преобразователи интерфейсов, часто устанавливаемые в щитах автоматизации инженерного оборудования.

Как правило, современные контроллеры автоматизации имеют возможности работы со SCADA ПО системы диспетчеризации, они являются одновременно и преобразователями интерфейсов. Программное обеспечение обеспечивает реализацию таких функций как:

  • Отображение информации в виде мнемонических схем с выдачей на них в реальном времени значений измерений, значений установок регуляторов, различных пиктограмм и других графических объектов;
  • Формирование и выдачу аварийных сообщений;
  • Ведение архивов (трендов) для всех аппаратных сигналов и расчетных технологических переменных;
  • Возможность коррекции работы системы, без ее остановки;
  • Возможность поиска и фильтрации записей архивов по ряду критериев отбора; возможность формирования отчетов на основе задаваемых пользователем шаблонов; просмотр архивной информации в виде графиков и таблиц;
  • Возможности создания расписаний, многоуровневого доступа и прочие функции систем компьютерных систем управления.

Передача данных от локальной системы автоматизации к SCADA системе диспетчеризации может осуществляться напрямую или через интерфейс OPC (Open Platform Communication) сервера. При этом OPC сервер является переводчиком между языком, которое понимает установленное оборудование, и языком программного интерфейса диспетчера.

Главной целью стандарта ОРС явилось обеспечение возможности совместной работы средств автоматизации, функционирующих на разных аппаратных платформах, в разных промышленных сетях и производимых разными фирмами.

После того, как стандарт OPC был введён в действие, практически все SCADA-пакеты были перепроектированы как ОРС-клиенты, а каждый производитель аппаратного обеспечения стал снабжать свои контроллеры, модули ввода-вывода, интеллектуальные датчики и исполнительные устройства стандартным ОРС сервером. Благодаря появлению стандартизации интерфейса стало возможным подключение любого физического устройства к любой SCADA, если они оба соответствовали стандарту ОРС. Разработчики получили возможность проектировать только один драйвер для всех SCADA-пакетов, а пользователи - возможность выбора оборудования и программ без прежних ограничений на их совместимость.

IP оборудование

90% современных систем диспетчеризации имеют возможность обмена информацией по IP сетям. Преобразование данных в соответствующие протоколы происходит либо непосредственно в контроллерах, либо на серверах верхнего уровня (Schneider Electric Automation Server), либо через шлюзы, например, Xenta -911.

С удешевлением IP оборудования, функции передачи данных в сеть постепенно распространяются на полевые устройства (клапаны, преобразователи частоты и т.п.), однако это решение пока в любом случае более дорогое, а также требует разработки стабильной и безопасной СКС на объекте, это так же дорогостоящее мероприятие.

IP оборудование для систем автоматизации и диспетчеризации инженерных систем подбирается в зависимости от требований к его функциям. Как правило, достаточно иметь программный стык системы диспетчеризации с IP сетью предприятия, и появляется возможность подключения к SCADA системе дополнительной информации. В частности, для визуального наблюдения за с диспетчерского пункта за важными узлами или помещениями, к системе подключаются используются IP камеры наблюдения системы промышленного телевидения или безопасности.

Разработка и проектирование систем диспетчеризации

Проект системы диспетчеризации выполняется разделом комплекта чертежей системы автоматизации и диспетчеризации здания. Сигналы, выводимые на пульт диспетчера, определяются разработчиками технологии систем здания.

Норматив проектирования: ВСН 60-89 «Устройства связи, сигнализации и диспетчеризации инженерного оборудования жилых и общественных зданий. Нормы проектирования»

Проект системы диспетчеризации обычно сдержит следующие листы:


В рамках проекта диспетчеризации разрабатывается так же и автоматизированное рабочее место диспетчера. В зависимости от масштаба системы оно может быть оснащено:

Щитом с нанесенной мнемосхемой (в настоящее время такие системы встречаются все реже и на производствах);

ПК с установленной SCADA программой ;

ПК с доступом по веб-интерфейсу к контроллеру-серверу системы (пример: automation server Schneider Electric);

ПК с установленной SCADA системой с выходом на несколько мониторов и на мониторную стену .

Подробности Категория: проект Автоматика

Наша компания разработала проект системы автоматизации, диспетчеризации и мониторинга АСДУ для ЦОД.

I.1. Системы автоматизации, диспетчеризации и мониторинга

I.1.1. Система диспетчеризации и управления

Построение системы автоматизированного диспетчерского управления ЦОДов предполагается осуществить на оборудовании с многоуровневой иерархической структурой. Для каждого ЦОД предполагается построение своей выделенной системы.

Верхний уровень системы АСДУ строится на основе сервера с дисковым массивом RAID массивом, который поддерживает горячую замену жестких дисков. Программное обеспечение (ПО) должно осуществлять функции получения информации о состоянии и параметрах оборудования инженерных систем, обработку полученных данных и мониторинг, управление с рабочих станций диспетчеров, документирование, архивирование и хранение информации, отчёты и дополнительные решения для планирования обслуживания, контроля и расчёта энергопотребления, центр регистрации телефонных звонков, планирование инвестиций. ПО должно иметь возможность использования интеграции с любыми локальными системами управления благодаря отличной поддержке открытых технологий (например «OPC», SNMP ).

Системы АСДУ и комплексной безопасности должны обеспечивать интеграцию этих систем. Серверы размещаются в 19” стойке в помещении кроссовой каждого ЦОД.

Рабочие станции диспетчеров размещаются в диспетчерской ЦОД. Количество и назначение рабочих станций определяется на этапе проектирования. Рекомендуемое количество операторов одной смены – 3 человека, рабочих мест – 4:

· АРМ руководителя смены;

· АРМ диспетчера механических систем;

· АРМ диспетчера электрических систем;

· АРМ диспетчера резервное.

Каждое рабочие место оборудовано от одного до трех мониторов с диагональю 21“ и звуковыми колонками для оповещения. В помещении диспетчерской размещаются принтеры для подготовки отчетов и рабочее место для работы с документацией.

На верхнем уровнем АСДУ сетью передачи данных является высокоскоростная сеть 10/100/1000 Мб/с TCP/IP. Сеть организована на базе Ethernet коммутаторов. Центральный коммутатор размещается в кроссовой ЦОДа в 19” монтажном шкафу. Сетевые шлюзы L-IP, FieldServer содержат средства организации независимого обмена информацией между диспетчерскими рабочими станциями (на базе локальной вычислительной сети) и полевыми контроллерами (на базе полевой шины).

Концепция предусматривает применение контролеров и модулей ввода вывода с открытым протоколом обмена.

Диспетчеризация предусматривается для инженерных систем предназначенных только для работы ЦОДов:

· общеобменная приточно-вытяжная вентиляция технических помещений;

· холодильные машины;

· измерители качества электроэнергии на вводных и основных отходящих линиях вводно-распределительных щитов;

· источники бесперебойного питания;

· насосная станция системы холодоснабжения;

· система кондиционирования машзалов и вспомогательных помещений;

· насосные дренажной канализации;

· система управления освещением,

и осуществляется путем сбора полного объема информации с локальных контроллеров и модулей автоматизации.

Сбор информации системы мониторинга состояния монтажных шкафов, системы кондиционирования машинных залов, системы контроля протечек осуществляется по протоколу.

Мониторинг инженерного оборудования входящего в объем основного комплекса:

· система дымоудаления и подпора воздуха;

· система теплоснабжения;

· системы общеобменной вентиляции складов, коридоров, диспетчерских и т.п.

· дизель-генераторы;

· высоковольтные подстанции,

выполняется путем подключения локальных контроллеров автоматизации этого оборудования к полевой шине диспетчеризации.

Диспетчеризация электрических распределительных щитов (ВРУ, ЩБЭ) осуществляется путем получения сигналов с дополнительных контактов автоматических выключателей входными дискретными модулями и контроллерами. Модули и контроллеры размещаются в отдельном шкафу в непосредственной близости от электрических щитов.

Интеграция с системой пожарной сигнализации осуществляется на верхнем уровне систем, каждая панель пожарной сигнализации по внутреннему протоколу подключается в полевую сеть.

Узлы учета тепла и водопотребления устанавливаются непосредственно на вводе в зону ЦОДов и оборудуются интерфейсом для подключения к системе АСДУ.

III.1.2 Система мониторинга инженерного оборудования машзалов

Для организации управления оборудованием физической инфраструктуры ЦОДов, предусматривается использование Nexans LANsense с дополнительным комплексом EMAC (Environmental Monitoring and Access Control). Система служит централизованным хранилищем важнейших данных о состоянии оборудования электропитания, кондиционирования и управления климатическими параметрами среды. Через данную систему могут быть доступны все данные, которые фиксирует то или иное включенное в сеть устройство:

В шкафах распределения питания (PDU) такими параметрами будут: напряжение, ток каждой отходящей линии питания, состояние автоматических выключателей;

Для систем охлаждения – холодопроизводительность кондиционеров, температура хладагента, скорость вращения вентиляторов, температура и влажность входящего/выбрасываемого воздуха, наличие протечек, и другие данные, полученные с внутренних датчиков кондиционера;

Для систем контроля параметров окружающей среды – температура, влажность;

Организация контроля доступа к авктивному оборудованию в серверных шкафах;

Состояние датчиков открытия/ закрытия дверей аппаратных стоек.

Также это решение осуществляет мониторинг работоспособности оборудования в режиме реального времени, предоставляет возможность генерации отчетов произвольной формы.

III.1.3 Автоматизация систем общеобменной вентиляции

Приточно-вытяжные системы оборудуются средствами управления, блокировки, регулирования и контроля обеспечивающими:

Местное управление из венткамер;

Дистанционное управление из помещения Диспетчерской;

Автоматическую блокировку всех элементов технологического оборудования, входящих в состав системы;

Защиту воздухонагревателей от замораживания по температуре воздуха за калорифером и температуре «обратного» теплоносителя;

Предварительный прогрев воздухонагревателя перед включением приточного вентилятора.

Для регулирования температуры и влажности воздуха в приточном воздуховоде устанавливаются датчики температуры и влажности. Регулирование температуры при этом предусматривается путем изменения теплопроизводительности воздухонагревателя воздействием на регулирующий клапан на теплоносителе. Технологический контроль за параметрами теплоносителя осуществляется местными показывающими приборами. При пожаре все системы общеобменной вентиляции отключаются. Оборудование автоматизации устанавливается в металлических щитах в помещениях вентиляционной камеры. Автоматическое управление реализовано на базе свободнопрограммируемых контроллеров.

III.1.4 Автоматизация холодоснабжения

Система автоматизации насосной станции холодоснабжения предусматривает щиты управления: один щит для управления внешним контуром, второй – для контура холодильных машин к потребителю. Щиты управления размещаются в помещении холодильных машин и оборудуются элементами сигнализации и ручного управления. Автоматическое управление реализовано на базе свободнопрограммируемых контроллеров и модулей расширения.

Работа систем холодоснабжения предлагается в двух вариантах:

Основной – сброс тепла в Неву,

Альтернативный – сброс тепла в атмосферу, через сухие градирни.

В основном варианте система автоматизации работает в двух режимах – летнем и зимнем:

В зимнем режиме система управляет производительностью насосов внутреннего контура и через регулирующие клапаны регулирует количество воды, проходящей через прецизионные кондиционеры;

В летнем режиме, по сравнению с зимнем режимом, система автоматизации дополнительно управляет работой чиллеров (управляет производительностью чиллеров, выполняет защитные функции, автоматически определяет переход работы системы из зимнего в летний режим).

В альтернативном варианте система также работает в двух режимах: летнем и зимнем. В зимнем режиме контролирует работу фрикулинга: обеспечивает в наружном гликолевом контуре температуру гликоля, управляет работой градирен, управляет работой насосов внутреннего контура и регулирует количество воды, проходящей через прецизионные кондиционеры. В летнем режиме система автоматизации дополнительно управляет работой чиллеров (управляет производительностью чиллеров, выполняет защитные функции, автоматически определяет переход работы системы из зимнего в летний режим).

Дополнительно система автоматизации осуществляет контроль и поддержание давления во внутреннем водяном контуре.

Циркуляционные насосы могут работать как в ручном, так и в автоматическом режиме, в зависимости от положения переключателя режима Ручное-Отключено-Автоматическое на передней двери щита управления и автоматики.

В ручном режиме каждый насос управляется собственными кнопками «Пуск», «Стоп».

После подачи команды «Включение холодоснабжения» включаются «основные» насосы.

После снятия команды «Включение холодоснабжения» сначала выключаются холодильные машины, а затем, через некоторое время выключаются циркуляционные насосы.

Насосы управляется встроенными преобразователем частоты. При включении насоса, преобразователь частоты должен постепенно повышать частоту до требуемой величины. При выключении насоса преобразователь частоты должен постепенно уменьшить частоту до 0

Наличие любого аварийного сигнала приводит к снятию команды на включение соответствующего насоса. При этом на дверце щита автоматики и управления загорается лампа «авария».

Сброс аварии происходит после устранения причины аварии нажатием кнопки «сброс аварии» на дверце щита автоматики и управления, либо оператором по системе АСДУ.

III.1.5 Автоматизация насосных дренажной канализации

Система автоматизации насосных дренажной канализации предусматривает следующие функции:

Уровень воды в приямке;

Автоматическое включение рабочего насоса, а при аварии резервного насоса;

Автоматический выбор рабочих и резервных насосов для обеспечения равномерной выработки моторесурсов;

Ручное управление насосами с помощью переключателей и кнопок на щитах управления;

Световая сигнализация, на фасаде щита автоматики:

o насосы - «включен»/ «авария»;

o наличие напряжения в сети.

III.1.6 Автоматизация управления освещением

Система управления освещением состоит из этажных щитов автоматизации управления освещением, в которых установлены контроллеры и I/O-модули, кнопочных пультов управления освещением, жк-пультов управления освещением и климатом и мультисенсоров освещенности.

Автоматизация систем управления освещением предусматривает следующие функции:

Ручное управление группами освещения с настенных кнопочных панелей как по отдельности, так и несколькими группами одновременно;

Автоматическое управление по мультисенсорам присутствия и освещенности, а также по расписанию, с целью экономии электроэнергии и ресурса осветительных приборов.

III.1.7 Автоматизация кондиционирования

Система автоматизации кондиционирования состоит из контроллеров управления, установленных в кондиционерах, и датчиков температуры и влажности. Контроллеры оборудуются интерфейсом для подключения к системе АСДУ.

Автоматизация систем кондиционирования предусматривает:

Ручное управление температурной установкой и скоростью вентилятора фэнкойла с настенных панелей;

Автоматическое управление оборудованием;

Дистанционное управление с АРМ оператора;

Поддержание и измерение климатических параметров в помещениях.

III.1.8 Система часофикации

Система часофикации (СЧ) предназначена для создания единой системы времени и синхронизации времени по всем системам. Кроме того, СЧ позволяет отображать визуально время для сотрудников с использованием вторичных часов, подключенных к общей СЧ.

Часовая микропроцессорная станция СТС предназначена для управления вторичными часами – стрелочными и цифровыми, различными исполнительными устройствами, а также синхронизации компьютеров и компьютерных сетей. Модульная структура часовой станции позволяет конфигурировать ее в соответствии с решаемыми задачами, а также добавлять необходимые модули в уже установленную станцию и, при необходимости, расширить функциональность системы единого времени



error: