Сила упругости вычисляется по формуле. Сила упругости

Сила упругости возникает в теле при его деформации. Она направлена против силы вызывающей деформацию тела. Действуют силы упругости во всех сечениях тела, а также в точке приложения силы, вызывающей деформацию. Если тело растягивается или сжимается в одном направлении, то силы упругости направлены вдоль оси сжатия или растяжения и противоположно приложению внешней силы, а также перпендикулярно его поверхности.

Формула 1 - Сила упругости.


K - Жесткость тела.

X - Удлинение тела.

С силами упругости знакомы все. Даже сейчас читая данный материал, Вы испытываете ее действие своей пятой точкой. Сидя вашей кормовой частью на стуле вы прикладываете силу пропорциональную вашему весу к поверхности стула. Он в свою очередь отчаянно противодействует ей.

Итак, причиной возникновения силы упругости служит деформация. А что же такое деформация. Это процесс в результате, которого изменяются размеры, форма либо объем тела, в результате приложения внешних сил. Если после окончания действия сил деформация прекращается, а тело приобретает прежние размеры, то такая деформация называется упругой. Соответственно если прежние размеры тела не восстанавливаются при снятии сторонних сил, то такая деформация называется пластической.



Рисунок 1 - Сила упругости.

Так же деформации классифицируются по способу приложения силы к телу. Силы могут вызывать растяжение или сжатие тела. А также его изгиб сдвиг или кручение.

В процессе деформации твердых тел происходит смещение атомов, которые находятся в узлах кристаллической решётки. Эти атомы удерживаются в положении равновесия электрическими силами. При попытке сжать тело, расстояние между атомами сокращается. При этом силы отталкивания стремятся вернуть этот атом обратно в положение равновесия. И, наоборот, при увеличении расстояния между атомами силы притяжения будут стремиться вернуть его обратно.

Рисунок 2 - Деформация кристаллической решетки.


При небольших деформациях сила упругости пропорциональна удлинению тела. Также изменение силы упругости, при малых деформациях, имеет линейный характер. Это является прямым следствием из закона Гука. Так как в процессе деформации тело может, как удлинятся, так и укорачивается, то вводится понятие модуль Юнга. По сути это тот же закон Гука вот только изменение линейных размеров тела берутся по модулю. То есть модуль Юнга не показывает, что происходит с телом, удлиняется оно или укорачивается. Он показывает только абсолютное изменение размеров тела.

Темы кодификатора ЕГЭ: силы в механике, сила упругости, закон Гука.

Как мы знаем, в правой части второго закона Ньютона стоит равнодействующая (то есть векторная сумма) всех сил, приложенных к телу. Теперь нам предстоит изучить силы взаимодействия тел в механике. Их три вида: сила упругости, гравитационная сила и сила трения. Начинаем с силы упругости.

Деформация.

Силы упругости возникают при деформациях тел. Деформация - это изменение формы и размеров тела. К деформациям относятся растяжение, сжатие, кручение, сдвиг и изгиб.
Деформации бывают упругими и пластическими. Упругая деформация полностью исчезает после прекращения действия вызывающих её внешних сил, так что тело полностью восстанавливает форму и размеры. Пластическая деформация сохраняется (быть может, частично) после снятия внешней нагрузки, и тело уже не возвращается к прежним размерам и форме.

Частицы тела (молекулы или атомы) взаимодействуют друг с другом силами притяжения и отталкивания, имеющими электромагнитное происхождение (это силы, действующие между ядрами и электронами соседних атомов). Силы взаимодействия зависят о расстояний между частицами. Если деформации нет, то силы притяжения компенсируются силами отталкивания. При деформации изменяются расстояния между частицами, и баланс сил взаимодействия нарушается.

Например, при растяжении стержня расстояния между его частицами увеличиваются, и начинают преобладать силы притяжения. Наоборот, при сжатии стержня расстояния между частицами уменьшаются, и начинают преобладать силы отталкивания. В любом случае возникает сила, которая направлена в сторону, противоположную деформации, и стремится восстановить первоначальную конфигурацию тела.

Сила упругости - это сила, возникающая при упругой деформации тела и направленная в сторону, противоположную смещению частиц тела в процессе деформации. Сила упругости:

1. действует между соседними слоями деформированного тела и приложена к каждому слою;
2. действует со стороны деформированного тела на соприкасающееся с ним тело, вызывающее деформацию, и приложена в месте контакта данных тел перпендикулярно их поверхностям (типичный пример - сила реакции опоры).

Силы, возникающие при пластических деформациях, не относятся к силам упругости. Эти силы зависят не от величины деформации, а от скорости её возникновения. Изучение таких сил
выходит далеко за рамки школьной программы.

В школьной физике рассматриваются растяжения нитей и тросов, а также растяжения и сжатия пружин и стержней. Во всех этих случаях силы упругости направлены вдоль осей данных тел.

Закон Гука.

Деформация называется малой , если изменение размеров тела много меньше его первоначальных размеров. При малых деформациях зависимость силы упругости от величины деформации оказывается линейной.

Закон Гука . Абсолютная величина силы упругости прямо пропорциональна величине деформации. В частности, для пружины, сжатой или растянутой на величину , сила упругости даётся формулой:

(1)

где - коэффициент жёсткости пружины.

Коэффициент жёсткости зависит не только от материала пружины, но также от её формы и размеров.

Из формулы (1) следует, что график зависимости силы упругости от (малой) деформации является прямой линией (рис. 1 ):

Рис. 1. Закон Гука

Коэффициент жёсткости - о угловой коэффициент в уравнении прямой . Поэтому справедливо равенство:

где - угол наклона данной прямой к оси абсцисс. Это равенство удобно использовать при экспериментальном нахождении величины .

Подчеркнём ещё раз, что закон Гука о линейной зависимости силы упругости от величины деформации справедлив лишь при малых деформациях тела. Когда деформации перестают быть малыми, эта зависимость перестаёт быть линейной и приобретает более сложный вид. Соответственно, прямая линия на рис. 1 - это лишь небольшой начальный участок криволинейного графика, описывающего зависимость от при всех значениях деформации .

Модуль Юнга.

В частном случае малых деформаций стержней имеется более детальная формула, уточняющая общий вид ( 1 ) закона Гука.

Именно, если стержень длиной и площадью поперечного сечения растянуть или сжать
на величину , то для силы упругости справедлива формула:

Здесь - модуль Юнга материала стержня. Этот коэффициент уже не зависит от геометрических размеров стержня. Модули Юнга различных веществ приведены в справочных таблицах.

На все тела, находящиеся вблизи Земли, действует ее притяжение. Под действием силы тяжести падают на Землю капли дождя, снежинки, оторвавшиеся от веток листья.

Но когда тот же снег лежит на крыше, его по-прежнему притягивает Земля, однако он не проваливается сквозь крышу, а остается в покое. Что препятствует его падению? Крыша. Она действует на снег с силои, равной силе тяжести, но направленной в противоположную сторону. Что это за сила?

На рисунке 34, а изображена доска, лежащая на двух подставках. Если на ее середину поместить гирю, то под действием силы тяжести гиря начнет двигаться, но через некоторое время, прогнув доску, остановится (рис. 34, б ). При этом сила тяжести окажется уравновешенной силой, действующей на гирю со стороны изогнутой доски и направленной вертикально вверх. Эта сила называется силой упругости . Сила упругости возникает при деформации. Деформация - это изменение формы или размеров тела. Одним из видов деформации является изгиб. Чем больше прогибается опора, тем больше сила упругости, действующая со стороны этой опоры на тело. Перед тем как тело (гирю) положили на доску, эта сила отсутствовала. По мере движения гири, которая все сильнее и сильнее прогибала свою опору, возрастала и сила упругости. В момент остановки гири сила упругости достигла силы тяжести и их равнодействующая стала равной нулю.

Если на опору поместить достаточно легкий предмет, то ее деформация может оказаться столь незначительной, что никакого изменения формы опоры мы не заметим. Но деформация все равно будет! А вместе с ней будет действовать и сила упругости, препятствующая падению тела, находящегося на данной опоре. В подобных случаях (когда деформация тела незаметна и изменением размеров опоры можно пренебречь) силу упругости называют силой реакции опоры .

Если вместо опоры использовать какой-либо подвес (нить, веревку, проволоку, стержень и т. д.), то прикрепленный к нему предмет также может удерживаться в покое. Сила тяжести и здесь будет уравновешена противоположно направленной силой упругости. Сила упругости при этом возникает из-за того, что подвес под действием прикрепленного к нему груза растягивается. Растяжение еще один вид деформации.

Сила упругости возникает и при сжатии . Именно она заставляет распрямляться сжатую пружину и толкать прикрепленное к ней тело (см. рис. 27, б ).

Большой вклад в изучение силы упругости внес английский ученый Р. Гук. В 1660 г., когда ему было 25 лет, он установил закон, названный впоследствии его именем. Закон Гука гласит:

Сила упругости, возникающая при растяжении или сжатии тела, пропорциональна его удлинению.

Если удлинение тела, т. е. изменение его длины, обозначить через х , а силу упругости - через F упр , то закону Гука можно придать следующую математическую форму:

F упр = kx ,

где k - коэффициент пропорциональности, называемый жесткостью тела. У каждого тела своя жесткость. Чем больше жесткость тела (пружины, проволоки, стержня и т. д.), тем меньше оно изменяет свою длину под действием данной силы.

Единицей жесткости в СИ является ньютон на метр (1 Н/м).

Проделав ряд экспериментов, подтвердивших данный закон, Гук отказался от его публикации. Поэтому в течение долгого времени никто не знал о его открытии. Даже спустя 16 лет, все еще не доверяя своим коллегам, Гук в одной из своих книг привел лишь зашифрованную формулировку (анаграмму) своего закона. Она имела вид

Выждав два года, чтобы конкуренты могли сделать заявки о своих открытиях, он наконец расшифровал свой закон. Анаграмма расшифровывалась так:

ut tensio, sic vis

(что в переводе с латинского означает: каково растяжение, такова и сила). «Сила любой пружины,- писал Гук,- пропорциональна ее растяжению».

Гук изучал упругие деформации. Так называют деформации, которые исчезают после прекращения внешнего воздействия. Если, например, пружину несколько растянуть, а затем отпустить, то она снова примет свою первоначальную форму. Но ту же пружину можно растянуть на столько, что, после того как ее отпустят, она так и останется растянутой. Деформации, которые не исчезают после прекращения внешнего воздействия, называют пластическими .

Пластические деформации применяют при лепке из пластилина и глины, при обработке металлов - ковке, штамповке и т. д.

Для пластических деформаций закон Гука не выполняется.

В древние времена упругие свойства некоторых материалов (в частности, такого дерева, как тис) позволили нашим предкам изобрести лук - ручное оружие, предназначенное для метания стрел с помощью силы упругости натянутой тетивы.

Появившись примерно 12 тысяч лет назад, лук просуществовал на протяжении многих веков как основное оружие почти всех племен и народов мира. До изобретения огнестрельного оружия лук являлся самым эффективным боевым средством. Английские лучники могли пускать до 14 стрел в минуту, что при массовом использовании луков в бою создавало целую тучу стрел. Например, число стрел, выпущенных в битве при Азенкуре (во время Столетней войны), составило примерно 6 миллионов!

Широкое распространение этого грозного оружия в средние века вызвало обоснованный протест со стороны определенных кругов общества. В 1139 г. собравшийся в Риме Латеранский (церковный) собор запретил применение этого оружия против христиан. Однако борьба за «лучное разоружение» не имела успеха, и лук как боевое оружие продолжал использоваться людьми еще на протяжении пятисот лет.

Совершенствование конструкции лука и создание самострелов (арбалетов) привело к тому, что выпущенные из них стрелы стали пробивать любые доспехи. Но военная наука не стояла на месте. И в XVII в. лук был вытеснен огнестрельным оружием.

В наше время стрельба из лука является лишь одним из видов спорта.

1. В каких случаях возникает сила упругости? 2. Что называют деформацией? Приведите примеры деформаций. 3. Сформулируйте закон Гука. 4. Что такое жесткость? 5. Чем отличаются упругие деформации от пластических?

В природе все взаимосвязано и непрерывно взаимодействует друг с другом. Каждая ее часть, каждый ее компонент и элемент постоянно подвергается воздействию целого комплекса сил.

Несмотря на то, что количество достаточно велико, все их можно разделить на четыре типа:

1. Силы гравитационного характера.

2. Силы электромагнитного характера.

3. Силы сильного типа.

В физике есть такое понятие, как упругая деформация. Упругая деформация - это такое явление деформации, при котором она исчезает после того, как прекращают действовать внешние силы. После такой деформации тело принимает свою изначальную форму. Таким образом, сила упругости, определение которой говорит, что она возникает в теле после упругой деформации, является потенциальной силой. Потенциальная сила, или консервативная сила - это такая сила, у которой ее работа не может быть зависимой от ее траектории, а зависит только от начальной и конечной точки приложения сил. Работа консервативной или потенциальной силы по замкнутой траектории будет равна нулю.

Можно сказать, что сила упругости имеет электромагнитную природу. Эту силу можно оценить как макроскопическое проявление взаимодействия между молекулами вещества или тела. В любом случае, при котором происходит либо сжатие, либо растяжение тела, проявляется сила упругости. Она направлена против силы, производящей деформацию, в направлении, противоположном смещению частиц данного тела, и перпендикулярна поверхности тела, подвергающегося деформации. Также и вектор этой силы направлен в сторону, противоположную деформации тела (смещению его молекул).

Вычисление значения силы упругости, возникающей в теле при деформации, происходит по Согласно ему, сила упругости равна произведению жесткости тела на изменение коэффициента деформации этого тела. По закону Гука, возникающая при определенной деформации тела или вещества сила упругости прямо пропорциональна удлинению этого тела, а направлена она в сторону, противоположную направлению, по которому перемещаются частицы данного тела относительно остальных частиц в момент деформации.

Показатель жесткости определенного тела или пропорциональный коэффициент зависит от материала, который используется для изготовления тела. Также жесткость зависит от геометрических пропорций и формы данного тела. В отношении силы упругости существует еще такое понятие, как Таким напряжением называют отношение модуля силы упругости к единице площади в данной точке рассматриваемого сечения. Если связать закон Гука с напряжением этого типа, то его формулировка прозвучит несколько иначе. Напряжение механического типа, которое возникает в теле при его деформации, всегда пропорционально относительному удлинению этого тела. Необходимо иметь в виду, что действие закона Гука ограничено только небольшими деформациями. Существуют пределы деформации, при которых действует данный закон. Если же они будет превышены, то сила упругости будет вычисляться по сложным формулам вне зависимости от закона Гука.

Деформация (от лат. Deformatio – искажение) – изменение формы и размеров тела под действием внешних сил.

Деформации возникают потому, что различные части тела движутся по-разному. Если бы все части тела двигались одинаково, то тело всегда сохраняло бы свою первоначальную форму и размеры, т.е. оставалось бы недеформированным. Рассмотрим несколько примеров.

Виды деформации

Деформации растяжения и сжатия . Если к однородному, закрепленному с одного конца стержню приложить силу F вдоль его оси в направлении от стержня, то он подвергнется деформации растяжения . Деформацию растяжения испытывают тросы, канаты, цепи в подъемных устройствах, стяжки между вагонами и т.д. Если на закрепленный стержень подействовать силой вдоль его оси по направлению к стержню, то он подвергнется сжатию . Деформацию сжатия испытывают столбы, колонны, стены, фундаменты зданий и т.п. При растяжении или сжатии изменяется площадь поперечного сечения тела.

Деформация сдвига . Деформацию сдвига можно наглядно продемонстрировать на модели твердого тела, представляющего собой ряд параллельных пластин, соединенных между собой пружинами (рис. 3). Горизонтальная сила F сдвигает пластины друг относительно друга без изменения объема тела. У реальных твердых тел при деформации сдвига объем также не изменяется. Деформации сдвига подвержены заклепки и болты, скрепляющие части мостовых ферм, балки в местах опор и др. Сдвиг на большие углы может привести к разрушению тела – срезу. Срез происходит при работе ножниц, долота, зубила, зубьев пилы и т.д.

Деформация изгиба . Легко согнуть стальную или деревянную линейку руками или с помощью какой-либо другой силы. Балки и стержни, расположенные горизонтально, под действием силы тяжести или нагрузок прогибаются – подвергаются деформации изгиба. Деформацию изгиба можно свести к деформации неравномерного растяжения и сжатия. Действительно, на выпуклой стороне (рис. 4) материал подвергается растяжению, а на вогнутой – сжатию. Причем чем ближе рассматриваемый слой к среднему слою KN , тем растяжение и сжатие становятся меньше. Слой KN , не испытывающий растяжения или сжатия, называется нейтральным. Так как слои АВ и CD подвержены наибольшей информации растяжения и сжатия, то в них возникают наибольшие силы упругости (на рисунке 4 силы упругости показаны стрелками). От внешнего слоя к нейтральному эти силы уменьшаются. Внутренний слой не испытывает заметных деформаций и не противодействует внешним силам, а поэтому является лишним в конструкции. Его обычно удаляют, заменяя стержни трубами, а бруски – тавровыми балками (рис. 5). Сама природа в процессе эволюции наделила человека и животных трубчатыми костями конечностей и сделала стебли злаков трубчатыми, сочетая экономию материала с прочностью и меткостью «конструкций».

Деформация кручения . Если на стержень, один из концов которого закреплен (рис. 6), подействовать парой сил, лежащей в плоскости поперечного сечения стержня, то он закручивается. Возникает, как говорят, деформация кручения.

Каждое поперечное сечение поворачивается относительно другого вокруг оси стержня на некоторый угол. Расстояние между сечениями не меняется. Таким образом, опыт показывает, что при кручении стержень можно представить как систему жестких кружков, насаженных центрами на общую ось. Кружки эти (точнее, сечения) поворачиваются на различные углы в зависимости от их расстояния до закрепленного конца. Слои поворачиваются, но на различные углы. Однако при этом соседние слои поворачиваются друг относительно друга одинаково вдоль всего стержня. Деформацию кручения можно рассматривать как неоднородный сдвиг. Неоднородность сдвига выражается в том, что деформация сдвига изменяется вдоль радиуса стержня. На оси деформация отсутствует, а на периферии она максимальна. На самом удаленном от закрепленного конца торце стержня угол поворота наибольший. Его называют углом кручения. Кручение испытывают валы всех машин, винты, отвертки и т.п.

Основными деформациями являются деформации растяжения (сжатия) и сдвига. При деформации изгиба происходит неоднородное растяжение и сжатие, а при деформации кручения – неоднородный сдвиг.

Силы упругости.

При деформациях твердого тела его частицы (атомы, молекулы, ионы), находящиеся в узлах кристаллической решетки, смещаются из своих положений равновесия. Этому смещению противодействуют силы взаимодействия между частицами твердого тела, удерживающие эти частицы на определенном расстоянии друг от друга. Поэтому при любом виде упругой деформации в теле возникают внутренние силы, препятствующие его деформации.

Силы, возникающие в теле при его упругой деформации и направленные против направления смещения частиц тела, вызываемого деформацией, называют силами упругости .

Силы упругости препятствуют изменению размеров и формы тела. Силы упругости действуют в любом сечении деформированного тела, а также в месте его контакта с телом, вызывающим деформации. Например, со стороны упруго деформированной доски D на брусок С , лежащий на ней, действует сила упругости F упр (рис. 7).

Важная особенность силы упругости состоит в том, что она направлена перпендикулярно поверхности соприкосновения тел, а если идет речь о таких телах, как деформированные пружины, сжатые или растянутые стержни, шнуры, нити, то сила упругости направлена вдоль их осей. В случае одностороннего растяжения или сжатия сила упругости направлена вдоль прямой, по которой действует внешняя сила, вызывающая деформацию тела, противоположно направлению этой силы и перпендикулярно поверхности тела.

Силу, действующую на тело со стороны опоры или подвеса, называют силой реакции опоры или силой натяжения подвеса . На рисунке 8 приведены примеры приложения к телам сил реакции опоры (силы N 1 , N 2 , N 3 , N 4 и N 5) и сил натяжения подвесов (силы T 1 , T 2 , T 3 и T 4).

Абсолютное и относительное удлинения

Линейная деформация (деформация растяжения) – деформация, при которой происходит изменение только одного линейного размера тела.

Количественно она характеризуется абсолютным Δl и относительным ε удлинением.

\(~\Delta l = |l - l_0|\) ,

где Δl – абсолютное удлинение (м); l и l 0 – конечная и начальная длина тела (м).

  • Если тело растягивают, то l > l 0 и Δl = l l 0 ;
  • если тело сжимают, то l < l 0 и Δl = –(l l 0) = l 0 – l (рис. 9).

\(~\varepsilon = \frac{\Delta l}{l_0}\) или \(~\varepsilon = \frac{\Delta l}{l_0} \cdot 100%\) ,

где ε – относительное удлинение тела (%); Δl – абсолютное удлинение тела (м); l 0 –начальная длина тела (м).

Закон Гука

Связь между силой упругости и упругой деформацией тела (при малых деформациях) была экспериментально установлена современником Ньютона английским физиком Гуком. Математическое выражение закона Гука для деформации одностороннего растяжения (сжатия) имеет вид

\(~F_{ynp} = k \cdot \Delta l\) , (1)

где F упр – модуль силы упругости, возникающей в теле при деформации (Н); Δl – абсолютное удлинение тела (м).

Коэффициент k называется жесткостью тела – коэффициент пропорциональности между деформирующей силой и деформацией в законе Гука.

Жесткость пружины численно равна силе, которую надо приложить к упруго деформируемому образцу, чтобы вызвать его единичную деформацию.

В системе СИ жесткость измеряется в ньютонах на метр (Н/м):

\(~[k] = \frac{}{[\Delta l]}\) .

Коэффициент жесткости зависит от формы и размеров тела, а также от материала.

Закон Гука для одностороннего растяжения (сжатия) формулируют так:

сила упругости, возникающая при деформации тела, пропорциональна удлинению этого тела.

Механическое напряжение.

Состояние упруго деформированного тела характеризуют величиной σ , называемой механическим напряжением .

Механическое напряжение σ равно отношению модуля силы упругости F упр к площади поперечного сечения тела S :

\(~\sigma = \frac{F_{ynp}}{S}\) .

Измеряется механическое напряжение в Па: [σ ] = Н/м 2 = Па.

Наблюдения показывают, что при небольших деформациях механическое напряжение σ пропорционально относительному удлинению ε :

\(~\sigma = E \cdot |\varepsilon|\) . (2)

Эта формула является одним из видов записи закона Гука для одностороннего растяжения (сжатия). В этой формуле относительное удлинение взято по модулю, так как оно может быть и положительным и отрицательным.

Коэффициент пропорциональности Е в законе Гука называется модулем упругости (модулем Юнга) . Экспериментально установлено, что

модуль Юнга численно равен такому механическому напряжению, которое должно было бы возникнуть в теле при увеличении его длины в 2 раза.

Докажем это: Из закона Гука получаем, что \(~E = \frac{\sigma}{\varepsilon}\) . Если модуль Юнга E численно равен механическому напряжению σ , то \(~\varepsilon = \frac{\Delta l}{l_0} = 1\) . Тогда \(~\Delta l = l - l_0 = l_0 ; l = 2 l_0\) .

Измеряется модуль Юнга в Па: [E ] = Па/1 = Па.

Практически любое тело (кроме резины) при упругой деформации не может удвоить свою длину: значительно раньше оно разорвется. Чем больше модуль упругости Е , тем меньше деформируется стержень при прочих равных условиях (l 0 , S , F ). Таким образом, модуль Юнга характеризует сопротивляемость материала упругой деформации растяжения или сжатия .

Закон Гука, записанный в форме (2), легко привести к виду (1). Действительно, подставив в (2) \(~\sigma = \frac{F_{ynp}}{S}\) и \(~\varepsilon = \frac{\Delta l}{l_0}\) , получим:

\(~\frac{F_{ynp}}{S} = E \cdot \frac{\Delta l}{l_0}\) или \(~F_{ynp} = \frac{E \cdot S}{l_0} \cdot \Delta l\) ,

где \(~\frac{E \cdot S}{l_0} = k\) .

Диаграмма растяжения

Для исследования деформации растяжения стержень из исследуемого материала при помощи специальных устройств (например, с помощью гидравлического пресса) подвергают растяжению и измеряют удлинение образца и возникающее в нем напряжение. По результатам опытов вычерчивают график зависимости напряжения σ от относительного удлинения ε . Этот график называют диаграммой растяжения (рис. 10).

Многочисленные опыты показывают, что при малых деформациях напряжение σ прямо пропорционально относительному удлинению ε (участок ОА диаграммы) – выполняется закон Гука.

Эксперимент показывает, что малые деформации полностью исчезают после снятия нагрузки (наблюдается упругая деформация). При малых деформациях выполняется закон Гука. Максимальное напряжение, при котором еще выполняется закон Гука, называется пределом пропорциональности σ п . Он соответствует точки А диаграммы.

Если продолжать увеличивать нагрузку при растяжении и превзойти предел пропорциональности, то деформация становится нелинейной (линия ABCDEK ). Тем не менее при небольших нелинейных деформациях после снятия нагрузки форма и размеры тела практически восстанавливаются (участок АВ графика). Максимальное напряжение, при котором еще не возникают заметные остаточные деформации, называется пределом упругости σ уп . Он соответствует точке В диаграммы. Предел упругости превышает предел пропорциональности не более чем на 0,33%. В большинстве случаев их можно считать равными.

Если внешняя нагрузка такова, что в теле возникают напряжения, превышающие предел упругости, то характер деформации меняется (участок BCDEK ). После снятия нагрузки образец не принимает прежние размеры, а остается деформированным, хотя и с меньшим удлинением, чем при нагрузке (пластическая деформация).

За пределом упругости при некотором значении напряжения, соответствующем точке С диаграммы, удлинение возрастает практически без увеличения нагрузки (участок CD диаграммы почти горизонтален). Это явление называется текучестью материала .

При дальнейшем увеличении нагрузки напряжение повышается (от точки D ), после чего в наименее прочной части образца появляется сужение («шейка»). Из-за уменьшения площади сечения (точка Е ) для дальнейшего удлинения нужно меньшее напряжение, но, в конце концов, наступает разрушение образца (точка К ). Наибольшее напряжение, которое выдерживает образец без разрушения, называется пределом прочности . Обозначим его σ пч (оно соответствует точке Е диаграммы). Его значение сильно зависит от природы материала и его обработки.

Чтобы свести к минимуму возможность разрушения сооружения, инженер должен при расчетах допускать в его элементах такие напряжения, которые будут составлять лишь часть предела прочности материала. Их называют допустимыми напряжениями. Число, показывающее, во сколько раз предел прочности больше допустимого напряжения, называют коэффициентом запаса прочности . Обозначив запас прочности через n, получим:

\(~n = \frac{\sigma_{np}}{\sigma}\) .

Запас прочности выбирается в зависимости от многих причин: качества материала, характера нагрузки (статическая или изменяющаяся со временем), степени опасности, возникающей при разрушении, и т.д. На практике запас прочности колеблется от 1,7 до 10. Выбрав правильно запас прочности, инженер может определить допустимое в конструкции напряжение.

Пластичность и хрупкость

Тело из любого материала при малых деформациях ведет себя как упругое. В то же время почти все тела в той или иной мере могут испытывать пластические деформации. Существуют хрупкие тела.

Механические свойства материалов разнообразны. Такие материалы, как резина или сталь, обнаруживают упругие свойства до сравнительно больших напряжений и деформаций. Для стали, например, закон Гука выполняется вплоть до ε = 1%, а для резины – до значительно больших ε , порядка десятков процентов. Поэтому такие материалы называют упругими .

У мокрой глины, пластилина или свинца область упругих деформаций мала. Материалы, у которых незначительные нагрузки вызывают пластические деформации, называют пластичными .

Деление материалов на упругие и пластичные в значительной мере условно. В зависимости от возникающих напряжений один и тот же материал будет вести себя или как упругий, или как пластичный. Так, при очень больших напряжениях сталь обнаруживает пластичные свойства. Это широко используют при штамповке стальных изделий с помощью прессов, создающих огромную нагрузку.

Холодная сталь или железо с трудом поддаются ковке молотом. Но после сильного нагрева им легко придать посредством ковки любую форму. Пластичный при комнатной температуре свинец приобретает ярко выраженные упругие свойства, если его охладить до температуры ниже –100 °С.

Большое значение на практике имеет свойство твердых тел, называемое хрупкостью . Тело называют хрупким , если оно разрушается при небольших деформациях . Изделия из стекла и фарфора хрупкие: они разбиваются на куски при падении на пол даже с небольшой высоты. Чугун, мрамор, янтарь также обладают повышенной хрупкостью. Наоборот, сталь, медь, свинец не являются хрупкими.

Отличительные особенности хрупких тел легче всего уяснить с помощью зависимости σ от ε при растяжении. На рисунке 11, а, б изображены диаграммы растяжений чугуна и стали. На них видно, что при растяжении чугуна всего лишь на 0,1% в нем возникает напряжение около 80 МПа, тогда как в стали оно при такой же деформации равно лишь 20 МПа.

Рис. 11

Чугун разрушается сразу при удлинении на 0,45%, почти не испытывая предварительно пластических деформаций. Предел прочности его равен 1,2∙108 Па. У стали же при ε = 0,45% деформация все еще остается упругой и разрушение происходит при ε ≈ 15%. Предел прочности стали равен 700 МПа.

У всех хрупких материалов напряжение очень быстро растет с удлинением, и они разрушаются при весьма малых деформациях. Пластичные свойства у хрупких материй лов практически не проявляются.

Литература

  1. Кабардин О.Ф. Физика: Справ. материалы: Учеб. пособие для учащих-ся. – М.: Просвещение, 1991. – 367 с.
  2. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. шк. – М.: Про-свещение, 1992. – 191 с.
  3. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. – М.: Дрофа, 2002. – 496 с.
  4. Элементарный учебник физики: Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга: т. 1. Механика. Теплота. Молекулярная физика. – М.: Физ-матлит, 2004. – 608 с.
  5. Яворский Б.М., Селезнев Ю.А. Справочное руководство по физике для поступающих в вузы и самообразования. – М.: Наука, 1983. – 383 с.

Составители

Ванкович Е. (11 «А» МГОЛ № 1), Шкрабов А. (11 «В» МГОЛ № 1).



error: