Где в промышленности используется никель. Никель - это что такое? Свойства никеля Для чего используется никель

Открытие долго оспаривалось: современники полагали, что никель - это не самостоятельный металл, а сплав уже известных металлов с мышьяком и серой. Кронстедт настаивал на индивидуальности никеля, ссылаясь в качестве «вещественных доказательств», в частности, на зеленую окраску его соединений и легкость взаимодействия этого «полуметалла» с серой . Кронстедту приходилось бороться не только с физико-химическими, но и с астрологическими доводами своих оппонентов. «Число металлов превосходит уже число планет, в солнечном круге находящихся, - писал Кронстедт, - поэтому ныне размножения числа металлов опасаться не надлежит».

Но Кронстедт умер в 1765 г., так и не дождавшись признания своего открытия. И даже через 10 лет после его смерти во Французской энциклопедии, высшем своде знаний эпохи, было напечатано: «Кажется, что еще должны быть проведены дальнейшие опыты, чтобы убедить пас, есть ли этот королек «никеля», о котором говорит г. Кронстедт, особый полуметалл или его скорее следует считать соединением железа , мышьяка, висмута , кобальта и даже меди с серой».

В том же 1775 г. соотечественник Кронстедта химик и металлург Т. Бергман опубликовал свои исследования, которые убедили многих в том, что никель действительно новый металл. Но окончательно споры улеглись лишь в начале XIX в., когда нескольким крупным химикам впервые удалось выделить чистый никель. Среди них был Ж. Л. Пруст, автор закона постоянства состава химических соединений; интересно, что важным аргументом в пользу индивидуальности никеля Пруст считал своеобразный сладковатый вкус раствора никелевого купороса, резко отличный от неприятного вкуса медного купороса. Другой французский химик, Л. Ж. Тенар, окончательно выяснил магнитные свойства никеля (на их своеобразие указывал еще Бергман).

Полувековые усилия исследователей были подытожены Иеремией Рихтером, который более известен в истории химии как один из основоположников стехиометрии. Чтобы получить чистый никель, Рихтер после обжига купферникеля NiAs на воздухе (для удаления большей части мышьяка), восстановления углем и растворения королька в кислоте проделал 32 перекристаллизации никелевого купороса и затем из этих кристаллов восстановил чистый металл. Полученный этим «весьма многотрудным путем» никель был описан Рихтером в 1804 г. в статье «Об абсолютно чистом никеле, благородном металле, его получении и особых свойствах».

В историю элемента № 28 статья Рихтера вошла как пророческая: в ней были указаны почти все характерные особенности никеля, сделавшие его одним из главнейших металлов современной техники, - большая сопротивляемость коррозии, жаростойкость, высокая пластичность и ковкость, магнитные свойства. Эти особенности и определили пути, по которым никель был направлен человеком.

Металлический никель...

Первые применения никелю придумали ювелиры. Спокойный светлый блеск никеля (вспомним Маяковского: «Облил булыжники лунный никель») не меркнет на воздухе. К тому же никель сравнительно легко обрабатывается. Поэтому его стали применять для изготовления украшений, предметов утвари и звонкой монеты.

Но и это весьма незначительное поле деятельности элемент № 28 получил не сразу, потому что никель, который выплавляли металлурги, был совсем не похож на благородный металл, описанный Рихтером. Он был хрупок и практически непригоден для обработки.

Позже выяснилось, что ничтожной (по нормам столетней давности) примеси серы - лишь 0,03% - достаточно, чтобы вконец испортить механические свойства никеля; происходит это из-за того, что тончайшая пленка хрупкого сернистого никеля разъединяет зерна металла, нарушает его структуру. Примерно так же действует на свойства этого металла и кислород .

Проблему получения ковкого никеля решило одно открытие. Присадка магния в расплавленный металл перед разливкой освобождает никель от примесей: магний активно связывает, «принимает на себя» серу и кислород. Это открытие было сделано еще в 70-х годах позопрошлого века, и с тех пор спрос на никель стал расти.

Вскоре выяснилось, что элемент № 28 - не только декоративный металл (хотя никелированием как средством защиты других металлов от коррозии и для декоративны целей пользуются уже около ста лет). Никель оказался и одним из самых перспективных материалов для изготовления химической аппаратуры, которая должна выдерживать разъедающее действие концентрированных рассолов, горячих щелочей, расплавленных солей, фтора , хлора , брома и других агрессивных сред. Химическую пассивность этот металл сохраняет и при нагреве; жаростойкость проложила никелю дорогу в реактивную технику.

Уникальную совокупность свойств увидели в никеле конструкторы электровакуумных приборов. Не случайно больше трех четвертей всего металла, расходуемого электровакуумной техникой, приходится на чистый никель; из него изготовляют проволочные держатели, вводы, сетки, аноды, экраны, керны для оксидных катодов и ряд других деталей.

Здесь наряду с коррозионной и тепловой стойкостью никеля, его пластичностью и прочностью очень ценится низкая упругость пара: при рабочей температуре около 750°С объем электронной лампы насыщается ничтожным количеством никеля - порядка 10-12 г, которое не нарушает глубокого вакуума.

Магнитные свойства никеля

Во многих отношениях замечательны магнитные свойства никеля. В 1842 г. Дж. П. Джоуль описал увеличение длины стальных прутков при намагничивании. Через 35 лет физики добрались и до химических собратьев железа - кобальта и никеля . И тут оказалось, что кобальтовые прутки тоже удлиняются в магнитном поле, а у никеля этот замечательный эффект не обнаруживается. Еще через несколько лет (в 1882 г.) выяснилось, что никель не только не удлиняется, а, наоборот, даже укорачивается в магнитном поле. Явление было названо магнитострикцией. Сущность его состоит в том, что при наложении внешнего магнитного поля беспорядочно расположенные микромагнитики металла (домены) выстраиваются в одном направлении, деформируя этим кристаллическую решетку. Эффект обратим: приложение механического напряжения к металлу меняет его магнитные характеристики.

Поэтому механические колебания в ферромагнитных материалах затухают гораздо быстрее, чем в неферромагнитных: энергия колебаний расходуется на изменение состояния намагниченности. Понимание природы этого «магнитомеханического затухания» позволило создать не боящиеся усталости сплавы для лопаток турбин и многих других деталей, подвергающихся вибрации.

Но, пожалуй, еще важнее другая область применения магнитомеханических явлений: стерженек из никеля в переменном магнитном поле достаточной частоты становится источником ультразвука. Раскачивая такой стерженек в резонансе (для этого подбирают соответствующую длину), достигают колоссальной для ультразвуковой техники амплитуды колебаний - 0,01% от длины стержня.

Никелевые магнитострикторы были применены, между прочим, при никелировании в ультразвуковом поле: благодаря ультразвуку получаются чрезвычайно плотные и блестящие покрытия, причем скорость их нанесения может быть гораздо выше, чем без озвучивания. Так «никель сам себе помогает».

Никель обнаружен в железных метеоритах. «Масса самородного железа в 71 венский фунт весом, которая выпала на воздуха на глазах у нескольких очевидцев в шесть часов пополудни 26 мая 1751 г. близ деревни Грашина в Хорватии и зарылась в землю на три сажени на незадолго до того вспаханном поле»

Ультразвук имеет и множество других применений. Однако никто, по-видимому, не исследовал воздействия быстропеременного магнитного поля на реакции с участием металлического никеля: вызванная магнитострикцией пульсация поверхности должна была бы существенно повлиять на химическое взаимодействие, так что изучение реакции «звучащего» металла может выявить новые неожиданные эффекты.

Никель и его сплавы

Обратимся теперь к сплавам никеля. Но лучше сказать вернемся: ведь история применения никеля началась со сплавов: одни - железоникелевые - человек получил в готовом виде, другие - медноникелевые - он научился выплавлять из природных руд, еще не зная, какие металлы в них входят.

А сейчас промышленность использует несколько тысяч сплавов, в которые входит никель, хотя и в наше время сочетания железо - никель и медь - никель, предоставленные нам самой природой, остаются основой подавляющего большинства никельсодержащих сплавов. Но, наверное, самое важное - это не количество и разнообразие этих сплавов, а то, что в них человек сумел усилить и развить нужные нам свойства никеля.

Известно, например, что твердые растворы отличаются большей прочностью и твердостью, чем их компоненты, но сохраняют их пластичность. Поэтому металлические материалы, подлежащие обработке посредством ковки, прокатки, протяжки, штамповки и т. п., создают на основе систем, компоненты которых образуют между собой твердые растворы. Именно таковы сплавы никеля с медью: оба металла полностью смешиваются в любых пропорциях как в жидком состоянии, так и при затвердевании расплава. Отсюда - прекрасные механические свойства медно-никелевых сплавов, известные еще древним металлургам.

Праотец многочисленного рода этих сплавов - «пакт-хонг» (или «пекфонг»), который выплавляли в Китае, возможно до нашей эры, дожил до наших дней. Он состоит из меди, никеля (20%) и цинка, причем цинк играет здесь в основном ту же роль, что и магний при приготовлении ковкого никеля. Этот сплав в небольших количествах начали получать в Европе еще в первой половине XIX в. под названиями аргентан, немецкое серебро , нейзильбер (новое серебро) и массой других, причем почти все эти названия подчеркивали красивый - серебряный - внешний вид сплава. Никель обладает интересной «отбеливающей способностью»: уже 20% его полностью гасят красный цвет меди.

«Новое серебро» успешно конкурировало со старым, завоевав популярность у ювелиров. Применили его и для чеканки монет. В 1850 г. Швейцария выпустила первые монеты из нейзильбера, и вскоре ее примеру последовали почти все страны. Американцы даже называют свои пятицентовые монетки «nickel». Масштабы этого применения медноникелевых сплавов огромны: столбик из «никелевых» монет, которые изготовлены в мире за 100 с небольшим лет, достиг бы Луны!

Ныне нейзильбер и родственный ему мельхиор (в мельхиоре нет цинка, но присутствует около 1% марганца) применяются не только и не столько для замены столового серебра, сколько в инженерных целях: мельхиор наиболее стоек (из всех известных сплавов!) против ударной, или струевой, коррозии. Это отличный материал для кранов, клапанов и особенно конденсаторных трубок.

А вот более молодой сплав меди и никеля - дитя случая и находчивости. В начале XX в. возникли осложнения при переработке богатых канадских руд, содержавших вдвое больше никеля, чем меди; разделение этих двух металлов было твердым орешком для металлургов. Полковник Амброз Монель, тогдашний президент Международной никелевой компании, подал смелую мысль - не разделять медь и никель, а выплавлять их совместно в «натуральный сплав». Инженеры осуществили эту идею - и получился знаменитый монель-металл - один из главнейших сплавов химического машиностроения. Сейчас создано много марок монель-металла, различающихся природой и количеством легирующих добавок, но основа во всех случаях прежняя - 60-70% никеля и 28-30% меди. Высокая химическая стойкость, блестящие механические свойства и сравнительная дешевизна (его и сейчас выплавляют без предварительного разделения меди и никеля) создали монель-металлу славу среди химиков, судостроителей, текстильщиков, нефтяников и даже парфюмеров.

Если монель-металл - «натуральный сплав» из сульфидных медноникелевых руд, то ферроникель - естественный продукт плавки окисленных руд никеля. Отличие состоит в том, что» зависимости от условии плавки в этом продукте можно широко менять соотношение никеля и железа (большую часть железа переводят в шлак). Ферроникель различного состава используют затем в качестве полупродукта для получения многих марок стали и других железоникелевых сплавов.

Видманштеттова структура. В 1808 г. директор Промышленного музея в Вене Алоиз фон Вндманштеттен, получив от своего друга образцы железных метеоритов, отполировал их и протравил азотной кислотой. Возникли изящные линии травления, отражающие характерную структуру сплава

Таких сплавов великое множество. Всем хорошо известны конструкционные никелевые и нержавеющие хромоникелевые стали. На них уходит почти половина всего никеля, добываемого человеком. Инконель - «аристократический родственник» нержавеющих сталей, в котором железа почти не осталось, это сплав (точнее, группа сплавов на основе никеля и хрома с добавками титана и других элементов. Инконель стал одним из главных материалов ракетной техники. Нихром (20% Cr, 80% Ni) - важнейший из сплавов сопротивления, основа большинства электронагревательных приборов, от домашних электроплиток до мощных промышленных печей. Менее известны элинвар (45% Ni, 55% Fe; легирующие добавки - Cr, Mo, W), сохраняющий постоянную упругость при различных температурах, и платинит (49% Ni, 51% Fe). Последний не содержит платины , но во многих случаях заменяет ее. Как и платину, его можно впаять в стекло, и спай не треснет, поскольку коэффициенты теплового расширения стекла и платинита совпадают. У инвара (36% Ni, 64% Fe) коэффициент теплового расширения близок к нулю.

Особый класс составляют магнитные сплавы. Пожалуй, наибольшие заслуги здесь принадлежат пермаллою FeNi 3 - сплаву с феноменальной магнитной проницаемостью, перевернувшему технику слабых токов. Сердечники из пермаллоя есть в любом телефонном аппарате, а тонкие пермаллойные пленки - главный элемент запоминающих устройств вычислительных машин.

Двигатель американской ракеты «Атлас», работающий при 3200°C, выдерживает эту температуру благодари сотням маленьких никелевых трубок толщиной всего 0,3 мм, образующих стенки камеры сгорания. По этим трубкам проходит жидкое топливо, охлаждающее стенки и само при этом подогревающееся.

(в скобках указаны координац. числа) Ni 2+ 0,069 нм (4), 0,077 нм (5), 0,083 нм (6).

Среднее содержание никеля в земной коре 8-10 -3 % по массе, в воде океанов 0,002 мг/л. Известно ок. 50 минералов никеля, из них важнейшие: пентландит (Fe,Ni) 9 S 8 , миллерит NiS, гарниерит (Ni,Mg) 3 Si 4 O 10 (OH) 10 . 4H 2 O, ревдинскит (не-пуит) (Ni,Mg) 3 Si 2 O 5 (OH) 4 , никелин NiAs, аннабергит Ni 3 (AsO 4) 2 8Н 2 О. В основном никель добывают из сульфидных медно-никелевых руд (Канада, Австралия, Юж. Африка) и из силикатно-окисленных руд (Новая Каледония, Куба, Филиппины, Индонезия и др.). Мировые запасы никеля на суше оцениваются в 70 млн. т.

Свойства. Никель-серебристо-белый металл . Кристаллич. решетка гранецентрир. кубическая, а = 0,35238 нм, z = 4, пространств. группа Рт3т. Т. пл. 1455 °С. т. кип. 2900 °С; плота. 8,90 г/см 3 ; C 0 p 26,l Дж/(моль . К); DH 0 пл 17,5 кДж/моль , DH 0 исп 370кДж/моль ; S 0 298 29,9 ДжДмоль К); ур-ние температурной зависимости давления пара для твердого никеля lgp(гПа) = 13,369-23013/T+0,520lgT+0,395T (298-1728К), для жидкого lgp(гПа)=11,742-20830/T+ 0,618 lg Т (1728- 3170 К); температурный коэф. линейного расширения 13,5 . 10 -6 К -1 (273-373 К); теплопроводность 94,1 Вт/(м х х К) при 273 К, 90,9 Вт/(м. К) при 298 К; g 1,74 Н/м (1520 °С); r 7,5 10 -8 Ом м, температурный коэф. r 6,75 . 10 -3 К -1 (298-398 К); ферромагнетик , точка Кюри 631 К. Модуль упругости 196-210 ГПа; s раст 280-720 МПа; относит. удлинение 40-50%; твердость по Бринеллю (отожженного) 700-1000 МПа. Чистый никель- весьма пластичный металл , хорошо обрабатывается в холодном и горячем состоянии, поддается прокатке, волочению, ковке.

Н икель химически малоактивен, но тонкодисперсный порошок , полученный восстановлением соединений никеля водородом при низких т-рах, пирофорен. Стандартный электродный потенциал Ni 0 /Ni 2+ - 0,23 В. При обычных т-рах никель на воздухе покрывается тонкой защитной пленкой никеля оксида . Не взаимод. с водой и влагой воздуха . При нагр. окисление никеля с пов-сти начинается при ~ 800 °С. С соляной, серной, фосфорной, фтористоводородной к-тами никель реагирует очень медленно. Практически на него не действуют уксусная и др. орг. к-ты, особенно в отсутствие воздуха . Хорошо реагирует с разб. HNO 3 , конц. HNO 3 пассивируется. Р-ры и расплавы щелочей и карбонатов щелочных металлов , а также жидкий NH 3 на никель не действуют. Водные р-ры NH 3 в присут. воздуха коррелируют никель.

Н икель в дисперсном состоянии обладает большой каталитич. активностью в р-циях гидрирования , дегидрирования , окисления , изомеризации , конденсации . Используют либо скелетный никель (никель Ренея), получаемый сплавлением с Аl или Si с послед. выщелачиванием щелочью , либо никель на носителе .

Н икель поглощает Н 2 и образует с ним твердые р-ры. Гидриды NiH 2 (устойчив ниже 0°С) и более стабильный NiH получены косвенными путями. Азот почти не поглощается никелем вплоть до 1400 °С, р-римость N 2 в металле 0,07% при 450 °С. Компактный никель не реагирует с NH 3 , дисперсный при 300-450 °С образует с ним н и т р и д Ni 3 N.

Расплавленный никель растворяет С с образованием к а р б и д а Ni 3 C, к-рый при кристаллизации расплава разлагается с выделением графита ; Ni 3 C в виде серо-черного порошка (разлагается при ~ 450°С) получают науглероживанием никеля в атмосфере СО при 250-400 °С. Дисперсный никель с СО дает летучий никеля тетракарбонил Ni(CO) 4 . При сплавлении с Si образует с и л и ц и д ы; Ni 5 Si 2 , Ni 2 Si и NiSi плавятся конгруэнтно соотв. при 1282, 1318 и 992 °С, Ni 3 Si и NiSi 2 -инконг-руэнтно соотв. при 1165 и 1125°С, Ni 3 Si 2 разлагается, не плавясь, при 845 °С. При сплавлении с В дает б о р и д ы: Ni 3 B (т. пл. 1175°С), Ni 2 B (1240 °С), Ni 3 B 2 (1163°C), Ni 4 B 3 (1580 °С), NiB 12 (2320 °С), NiB (разлагается при 1600 °С). С парами Se никель образует с е л е н и д ы: NiSe (т. пл. 980 °С), Ni 3 Se 2 и NiSe 2 (разлагаются соотв. при 800 и 850 °С), Ni 6 Se 5 и Ni 21 Se 20 (существуют только в твердом состоянии). При сплавлении никеля с Те получают т е л л у р и д ы: NiTe и NiTe 2 (между ними образуется, по-видимому, широкая область твердых р-ров) и др.

А р с е н а т Ni 3 (AsO 4) 2 . 8H 2 O-зеленые кристаллы ; р-римость в воде 0,022%; к-тами разлагается; выше 200 °С обезвоживается, при ~ 1000°С разлагается; катализатор получения твердого мыла .

С и л и к а т Ni 2 SiO 4 -светло-зеленые кристаллы с ромбич. решеткой; плотн. 4,85 г/см 3 ; разлагается, не плавясь, при 1545°С; в воде не раств.; минер. к-тами медленно разлагается при нагревании. А л ю м и н а т NiAl 2 O 4 (никелевая шпи-нель)-голубые кристаллы с кубич. решеткой; т. пл. 2110°С; плотн. 4,50 г/см 3 ; не раств. в воде ; медленно разлагается к-тами; катализатор гидрирования .

Важнейшие комплексные соед. никеля-а м м и н ы. Наиб. характерны гексааммины и акватетраммины с катионами соотв. 2+ и 2+ . Это голубые или фиолетовые кристаллич. в-ва, обычно раств. в воде , в р-рах ярко-синего цвета; при кипячении р-ров и при действии к-т разлагаются; образуются в р-рах при аммиачной переработке никелевых и кобальтовых руд .

В комплексах Ni(III) и Ni(IV) координац. число никеля равно 6. Примеры-фиолетовый K 3 и красный K 2 , образующиеся при действии F 2 на смеси NiCl 2 и КСl; сильные окислители . Из др. типов известны соли гетеро-поликислот, напр. (NH 4) 6 H 7 . 5H 2 O, большое число внутрикомплексных соед. Ni(II). См. также Никель-органические соединения.

Получение. Руды перерабатывают пиро- и гидромстал-лургич. путем. Для силикатно-окисленных руд (не поддаются обогащению) используют либо восстановит. плавку с получением ферроникеля, к-рый далее подвергают продувке в конвертере с целью рафинирования и обогащения, либо плавку на штейн с серосодержащими добавками (FeS 2 или CaSO 4). Полученный штейн продувают в конвертере для удаления Fe, а затем дробят и обжигают, из образовавшегося NiO восстановит. плавкой получают металлический никель. Никелевые концентраты, получаемые при обогащении сульфидных руд , плавят на штейн с послед. продувкой в конвертере. Из медно-никелевого штейна после его медленного охлаждения флотацией выделяют концентрат Ni 3 S 2 , к-рый, аналогично штейнам из окисленных руд , обжигают и восстанавливают.

Один из путей гидропереработки окисленных руд-восстановление руды генераторным газом или смесью Н 2 и N 2 с послед. выщелачиванием р-ром NH 3 и СО 2 с продувкой воздуха . Р-р очищают от Со сульфидом аммония . При разложении р-ра с отгонкой NH 3 осаждается гидроксо-карбонат никеля, к-рый либо прокаливают и из образовавшегося NiO восстановит. плавкой получают никель, либо повторно раств. в р-ре NH 3 и после отгонки NH 3 из пульпы восстановлением Н 2 получают никель. Др. путь - выщелачивание окисленной руды серной к-той в автоклаве . Из образовавшегося р-ра после его очистки и нейтрализации никель осаждают сероводородом под давлением и полученный концентрат NiS перерабатывают подобно штейнам.

Гидропереработка сульфидных никелевых материалов (концентратов, штейнов) сводится к автоклавному окислит. выщелачиванию либо р-рами NH 3 (при низком содержании Со), либо H 2 SO 4 . Из аммиачных р-ров после отделения CuS никель осаждают водородом под давлением . Для разделения Ni, Со и Сu из аммиачных р-ров применяют также экстракц. способы с использованием, в первую очередь, хелатообразу-ющих экстрагентов.

Автоклавное окислитю выщелачивание с получением сульфатных р-ров применяют как к обогащенным материалам (штейнам) с переводом никеля и др. металлов в р-р, так и к бедным пирротииовым Fe 7 S 8 концентратам. В последнем случае окисляется преим. пирротин, что позволяет выделить элементарную S и сульфидный концентрат, переплавляемый далее на никелевый штейн.

Подробности Категория: Просмотров: 4652

НИКЕЛЬ , Ni, химический элемент VIII группы периодической системы, принадлежащий к триаде т. н. железных металлов (Fe, Со, Ni). Атомный вес 58,69 (известны 2 изотопа с атомным весом 58 и 60); порядковый номер 28; обычная валентность Ni равна 2, реже - 4, 6 и 8. В земной коре никель более распространен, чем кобальт, составляя около 0,02% ее по весу. В свободном состоянии никель встречается только в метеорном железе (иногда до 30%); в геологических образованиях он содержится исключительно в виде соединений - кислородных, сернистых, мышьяковистых, силикатов и т. п. (см. Никелевые руды).

Свойства никеля . Чистый никель - серебристо-белый металл с сильным блеском, не тускнеющим на воздухе. Он тверд, тугоплавок и легко полируется; при отсутствии примесей, (особенно серы) он весьма гибок, ковок и тягуч, способен развальцовываться в очень тонкие листы и вытягиваться в проволоку диаметром менее 0,5 мм. Кристаллическая форма никеля - куб. Удельный вес 8,9; литые изделия имеют удельный вес ~8,5; прокаткой он м. б. увеличен до 9,2. Твердость по Мосу ~5, по Бринеллю 70. Предельное сопротивление на разрыв 45-50 кг/мм 2 , при удлинении 25-45%; модуль Юнга Е 20 = (2,0-2,2)х10 6 кг)см 2 ; модуль сдвига 0,78·10 6 кг/см 2 ; коэффициент Пуассона μ =0,3; сжимаемость 0,52·10 -6 см 2 /кг; температура плавления никеля по позднейшим наиболее точным определениям равна 1455°С; температура кипения - в пределах 2900-3075°С.

Линейный коэффициент термического расширения 0,0000128 (при 20°С). Теплоемкость: удельная 0,106 cal/г, атомная 6,24 cal (при 18°С); теплота плавления 58,1 cal/г; теплопроводность 0,14 cal см/см 2 сек. °С (при 18°С). Скорость звукопередачи 4973,4 м/сек. Удельное электрическое сопротивление никеля при 20°С равно 6,9-10 -6 Ω-см с температурным коэффициентом (6,2-6,7)·10 -3 . Никель принадлежит к группе ферромагнитных веществ, но магнитные свойства его уступают таковым железа и кобальта; для никеля при 18°С предел намагничения J m = 479 (для железа J m = 1706); точка Кюри 357,6°С; магнитная проницаемость как самого никеля, так и его ферросплавов значительна (см. ниже). При обыкновенной температуре никель вполне устойчив по отношению к атмосферным влияниям; вода и щелочи, даже при нагревании, на него не действуют. Никель легко растворяется в разбавленной азотной кислоте с выделением водорода и значительно труднее - в НСl, H 2 SO 4 и концентрированная HNО 3 . Будучи накален на воздухе, никель окисляется с поверхности, но лишь на незначительную глубину; в нагретом состоянии он легко соединяется с галоидами, серой, фосфором и мышьяком. Рыночными сортами металлического никеля являются следующие: а) обыкновенный металлургический никель, получаемый восстановлением из его окислов при помощи угля, содержит обычно от 1,0 до 1,5% примесей; б) ковкий никель, получаемый из предыдущего переплавлением с добавкой около 0,5% магния или марганца, содержит примесь Mg или Мn и почти не содержит серы; в) никель, приготовленный по способу Монда (через никелькарбонил) - наиболее чистый продукт (99,8-99,9% Ni). Обычными примесями в металлургическом никеле являются: кобальт (до 0,5%), железо, медь, углерод, кремний, окислы никеля, сера и окклюдированные газы. Все эти вещества, за исключением серы, мало влияют на технические свойства никеля, понижая лишь его электропроводность и несколько повышая твердость. Сера (присутствующая в форме сульфида никеля) резко уменьшает ковкость и механическую прочность никеля, особенно при повышенной температуре, что замечается даже при содержании <0,005% S. Вредное влияние серы объясняется тем, что сульфид никеля, растворяясь в металле, дает хрупкий и низкоплавкий (температура плавления около 640°С) твердый раствор, образующий прослойки между кристаллитами чистого никеля.

Применение никеля . Основная масса металлургического никеля идет на изготовление ферроникеля и никелевой стали. Крупным потребителем никеля является также производство различных специальных сплавов (см. ниже) для электропромышленности, машиностроения и химического аппаратуростроения; эта область применения никеля за последние годы показывает тенденцию к усиленному росту. Из ковкого никеля готовят лабораторные аппараты и посуду (тигли, чашки), кухонную и столовую посуду. Большие количества никеля расходуются для никелирования железных, стальных и медных изделий и в производстве электрических аккумуляторов. Из химически чистого никеля изготовляются ламповые электроды для радиотехнической аппаратуры. Наконец восстановленный чистый никель в виде порошка является наиболее употребительным катализатором при всевозможных реакциях гидрирования (и дегидрирования), например, при гидрогенизации жиров, ароматических углеводородов, карбонильных соединений и т. д.

Никелевые сплавы . Качественный и количественный состав применяемых никелевых сплавов весьма разнообразен. Техническое значение имеют сплавы никеля с медью, железом и хромом (в самое последнее время также с алюминием), - часто с добавкой третьего металла (цинка, молибдена, вольфрама, марганца и др.) и с определенным содержанием углерода или кремния. Содержание никеля в этих сплавах варьирует от 1,5 до 85%.

Сплавы Ni-Cu образуют твердый раствор при любом соотношении компонентов. Они стойки по отношению к щелочам, разбавленной H 2 SО 4 и нагреву до 800°С; антикоррозионные свойства их растут с увеличением содержания Ni. Из сплава 85% Cu+15% Ni изготовляются оболочки для пуль, из сплава 75% Си + 25% Ni - мелкая разменная монета. Сплавы с 20-40% Ni служат для изготовления труб в конденсационных установках; такие же сплавы употребляются для облицовки столов в кухнях и буфетах и для изготовления штампованных орнаментальных украшений. Сплавы с 30-45% Ni идут на производство реостатной проволоки и стандартных электрических сопротивлений; сюда относятся например, никелин и константан. Сплавы Ni-Cu с высоким содержанием Ni (до 70%) отличаются большой химической устойчивостью и широко применяются в аппарато- и машиностроении. Наибольшим распространением пользуется монель-металл.

Сплавы Ni-Cu-Zn достаточно стойки по отношению к органическим кислотам (уксусной, винной, молочной); при содержании около 50% меди они объединяются под общим названием нейзильбера . Более богатый медью аппаратурный сплав амбарак содержит 20% Ni, 75% Сu и 5% Zn; по устойчивости он уступает монель-металлу. Сплавы типа бронзы или латуни, содержащие в своем составе никель, называют иногда также никелевой бронзой.

Сплавы Ni-Cu-Mn , содержащие 2-12% Ni, под названием манганина употребляются для электрических сопротивлений; в электроизмерительных приборах применяется сплав из 45-55% Ni, 15-40% Мn и 5-40% Сu.

Сплавы Ni-Cu-Сг стойки по отношению к щелочам и кислотам, за исключением НСl.

Сплавы Ni-Cu-W за последнее время получили большое значение как ценные кислотоупорные материалы для химической аппаратуры; при содержании 2-10% W и не свыше 45% Сuони хорошо вальцуются и весьма устойчивы к горячей H 2 SO 4 . Наилучшими качествами обладает сплав состава: 52% Ni, 43% Сu, 5% W; допустима небольшая примесь Fe.

Сплавы Ni-Cr . Хром растворяется в никеле до 60%, никель в хроме до 7%; в сплавах промежуточного состава имеются кристаллические решетки обоих типов. Эти сплавы стойки по отношению к влажному воздуху, щелочам, разбавленным кислотам и к H 2 SО 4 ; при содержании 25% Сг и более, они устойчивы и против HNO 3 ; добавка ~2% Ag делает их легко вальцующимися. При 30% никеля сплав Ni-Cr вполне лишен магнитных свойств. Сплав, содержащий 80-85% Ni и 15-20% Сг, наряду с высоким электрическим сопротивлением весьма устойчив к окислению при высоких температурах (выдерживает нагревание до 1200°С); он применяется в электрических печах сопротивления и хозяйственных нагревательных приборах (электрические утюги, жаровни, плиты). В США из Ni-Cr изготовляются литые трубы для высоких давлений, применяемые в заводской аппаратуре.

Сплавы Ni-Mo обладают высокой кислотоупорностью (при >15% Мо), но не получили распространения вследствие их дороговизны.

Сплавы Ni-Mn (с 1,5-5,0% Мn) стойки по отношению к щелочам и влаге; техническое применение их ограничено.

Сплавы Ni-Fe образуют непрерывный ряд твердых растворов; они составляют обширную и технически важную группу; в зависимости от содержания углерода они носят характер либо стали, либо чугуна. Обычные сорта никелевой стали (перлитовой структуры) содержат 1,5-8% Ni и 0,05- 0,50% С. Присадка никеля делает сталь очень вязкой и значительно повышает ее предел упругости и ударное сопротивление на изгиб, не нарушая ковкости и свариваемости. Из никелевой стали готовят ответственные детали машин, например передаточные валы, оси, шпиндели, цапфы, зубчатые сцепления и т. п., а также многие детали артиллерийских конструкций; сталь с 4-8% Ni и <0,15% С хорошо поддается цементации. Введение никеля в чугуны(>1,7% С) способствует выделению углерода (графита) и разрушению цементита; никель повышает твердость чугуна, его сопротивление на растяжение и изгиб, способствует равномерному распределению твердости в отливках, облегчает механическую обработку, придает мелкозернистость и уменьшает образование пустот в литье. Никелистый чугун применяется как щелочеупорный материал для химической аппаратуры; наиболее пригодны для этой цели чугуны с содержанием 10-12% Ni и ~1 % Si. Сталеподобные сплавы с более высоким содержанием никеля (25-46% Ni при 0,1-0,8% С) имеют аустенитовую структуру; они очень стойки к окислению, к действию горячих газов, щелочей и уксусной кислоты, обладают высоким электрическим сопротивлением и весьма малым коэффициентом расширения. Эти сплавы почти не магнитны; при содержании Ni в пределах 25-30% они вполне утрачивают магнитные свойства; магнитная проницаемость их (в полях низкой напряженности) растет с увеличением содержания никеля и м. б. еще повышена специальной термической обработкой. К сплавам этой категории относятся: а) ферроникель (25% Ni при 0,3-0,5% С), идущий на изготовление клапанов моторов и других машинных частей, работающих при повышенной температуре, а также немагнитных частей электрических машин и реостатной проволоки; б) инвар ; в) платинит (46% Ni при 0,15% С) применяется в электролампах вместо платины для впаивания проводов в стекло. Сплав пермаллой (78% Ni при 0,04% С) имеет магнитную проницаемость μ = 90000 (в поле напряженностью 0,06 гаусса); предел намагничения I m = 710. Некоторые сплавы этого типа идут на изготовление подводных электрических кабелей.

Сплавы Ni-Fe-Cr - также очень важная в техническом отношении группа. Хромоникелевая сталь , употребляемая в машино- и моторостроении, содержит обычно 1,2-4,2% Ni, 0,3-2,0% Сг и 0,12-0,33% С. Кроме высокой вязкости она обладает и значительной твердостью и сопротивляемостью износу; временное сопротивление на разрыв, в зависимости от характера термической обработки, колеблется между 50 и 200 кг/мм 2 ; идет на изготовление коленчатых валов и других деталей двигателей внутреннего сгорания, частей станков и машин, а также артиллерийской брони. В сталь для лопаток паровых турбин, с целью повышения твердости, вводится большое количество хрома (от 10 до 14%). Хромоникелевые стали с содержанием >25% Ni хорошо противостоят действию горячих газов и обладают минимальной текучестью: они могут подвергаться значительным усилиям в условиях высокой температуры (300-400°С), не обнаруживая остаточных деформаций; употребляются для изготовления клапанов к моторам, частей газовых турбин и конвейеров для высокотемпературных установок (например, печей для отжига стекла). Сплавы Ni-Fe-Cr, содержащие >60% Ni, служат для изготовления литых машинных деталей и низкотемпературных частей электрических нагревательных приборов. Как аппаратурный материал, сплавы Ni-Fe-Cr обладают высокими антикоррозионными свойствами и довольно устойчивы по отношению к HNО 3 . В химическом аппаратостроении пользуются хромоникелевой сталью, содержащей 2,5-9,5% Ni и 14-23% Сг при 0,1-0,4% С; она почти не магнитна, устойчива к HNО 3 , горячему аммиаку и к окислению при высоких температурах; присадка Мо или Сu повышает стойкость к горячим кислотным газам (SО 2 , НСl); повышение содержания Ni увеличивает способность стали к механической обработке и стойкости к H 2 SO 4 , но уменьшает стойкость к HNO 3 . Сюда относятся крупповские нержавеющие стали (V1M,V5M) и кислотоупорные стали (V2A, V2H и др.); термическая обработка их заключается в нагреве до ~ 1170°С и закалке в воде. В качестве щелочеупорного материала применяют никель-хромистый чугун (5-6% Ni и 5-6% Сг при содержании >1,7% С). Сплав нихром, содержащий 54-80% Ni, 10-22% Сг и 5-27% Fe, иногда с добавкой Сu и Мn, устойчив к окислению в пределах температур до 800°С и находит применение в нагревательных приборах (этим же названием иногда обозначают описанные выше сплавы Ni-Cr, не содержащие Fe).

Сплавы Ni-Fe-Mo предлагались как аппаратурный материал. Наивысшей кислотоупорностью и антикоррозионными свойствами обладает сплав из 55-60% Ni, 20% Fe и 20% Мо, при содержании < 0,2% С; присадка небольшого количества V еще более повышает кислотоупорность; Мn м. б. вводим в количестве до 3%. Сплав вполне устойчив по отношению к холодным кислотам (НСl, H 2 SO 4), за исключением HNO 3 , и к щелочам, но разрушается хлором и окислителями в присутствии кислот; он имеет твердость по Бринеллю >200, хорошо вальцуется, куется, отливается и обрабатывается на станках.

Сплавы Ni-Fe-Cu применяются в химической аппаратуре (сталь с 6-11% Ni и 16-20% Сu).

Сплавы Ni-Fe-Si . Для постройки кислотоупорной аппаратуры применяются кремненикелевые стали марки «дуримет» (Durimet), содержащие 20-25% Ni (или Ni и Сг в отношении 3:1) и ~ 5% Si, иногда с добавкой Сu. Они устойчивы к холодным и горячим кислотам (H 2 SО 4 , HNO 3 , СН 3 ·СООН) и соляным растворам, менее устойчивы к НСl; хорошо поддаются горячей и холодной механической обработке.

В сплавах Ni-AI имеет место образование химического соединения AINi, растворяющегося в избытке одного из компонентов сплава.

Техническое значение начинают приобретать сплавы, основой которых является система Ni-AI-Si . Они оказались весьма стойкими по отношению к HNО 3 и к холодной и горячей H 2 SО 4 , но механической обработке почти не поддаются. Таков, например, новый кислотоупорный сплав для литых изделий, содержащий около 85% Ni, 10% Si и 5% Аl (или Аl + Сu); его твердость по Бринеллю около 360 (отжигом при 1050°С снижается до 300).

Металлургия никеля . Главной областью применения никеля является производство специальных сортов стали. Во время войны 1914-18 гг. для этой цели расходовалось не менее 75% всего никеля; в нормальных же условиях ~65%. Никель широко применяется также в сплавах его с нежелезными (цветными) металлами, гл. обр. с медью (~ 15%). Остальное количество никеля идет: на изготовление никелевых анодов - 5%, ковкого никеля - 5% и разных изделий - 10%.

Центры производства никеля неоднократно перемещались из одних местностей земного шара в другие, что объяснялось наличием благонадежных рудных месторождений и общей экономической конъюнктурой. Промышленная выплавка никеля из руд началась в 1825-26 г. в Фалуне (Швеция), где был найден никель, содержащий серный колчедан. В 90-х годах прошлого века шведские месторождения оказались по-видимому практически исчерпанными. Лишь во время войны 1914-18 гг., в связи с повышением спроса на металлический никель, Швеция давала несколько десятков тонн этого металла (максимум 49 т в 1917 г.). В Норвегии производство началось в 1847-50 гг.

Главной рудой здесь являлись пирротины с содержанием в среднем 0,9-1,5% Ni. Производство в Норвегии в небольших размерах (максимум - около 700 т в год во время войны 1914-18 гг.) существует и по настоящее время. В середине прошлого века центр никелевой промышленности сосредоточился в Германии и Австро-Венгрии. Сначала она базировалась здесь исключительно на мышьяковистых рудах Шварцвальда и Гладбаха, а с 1901 года, и в особенности во время войны 1914-18 гг., на окисленных рудах Силезии (Франкенштейн). Разработка месторождений никелевых руд в Новой Каледонии началась в 1877 г. Благодаря использованию этих руд мировое производство никеля в 1882 г. достигло почти 1000 т. Добытая здесь руда перерабатывалась на месте лишь в ограниченных количествах, главная же ее масса отправлялась в Европу. Лишь в последние годы, вследствие повышенных транспортных тарифов, в Европу импортируются гл. обр. богатые штейны, содержащие 75-78% Ni, в количестве никеля около 5000 т в год. В настоящее время предположено получать металлический никель в Новой Каледонии, для чего обществом «Никель» сооружается рафинировочный завод, который будет пользоваться электрической энергией гидростанции на реке Ятэ. Никелевая промышленность в Канаде (Северная Америка) возникла в конце 80-х гг. прошлого столетия. До последнего времени здесь существовали две фирмы; одна английская - Mond Nickel Со. и другая американская - International Nickel Со. В конце 1928 года обе фирмы объединились в мощный мировой трест под названием International Nickel Company of Canada, поставляющий на рынок около 90% мировой производительности никеля и эксплуатирующий месторождения, расположенные вблизи г. Седбюри. Фирма Mond Nickel Со. проплавляет свои руды на заводе в Конистоне на штейн, который для дальнейшей переработки отправляется в Англию на завод в Клейдаке. Фирма International Nickel Со. выплавленный на заводе в Конперклифе штейн отправляет для получения металла на завод в Порт- Кольборн. Мировое производство никеля в последние годы достигает 40000 т.

Переработка никелевых руд производится исключительно сухим путем. Гидрометаллургические способы, неоднократно рекомендовавшиеся для переработки руд, не нашли пока применения в практике. Эти способы в настоящее время иногда применяются лишь к переработке промежуточных продуктов (штейнов), получаемых в результате переработки руд сухим путем. Применение сухого пути к переработке никелевых руд (как сернистых, так и окисленных) характеризуется осуществлением одного и того же принципа постепенной концентрации ценных составляющих руды, в виде тех или иных продуктов, которые уже затем перерабатываются на металлы, подлежащие извлечению. Первая стадия такой концентрации пенных составляющих никелевый руд осуществляется рудной плавкой на штейн. В случае сернистых руд, последние плавятся в сыром или в предварительно обожженном состоянии в шахтных или пламенных печах. Окисленные руды плавятся и шахтных печах с добавкой в их шихту серу содержащих материалов. Штейн рудной плавки, роштейн , оказывается не пригодным для его непосредственной переработки на содержащиеся в нем ценные металлы, благодаря их сравнительно незначительной концентрации в этом продукте. В виду этого штейн рудной плавки подвергается дальнейшей концентрации или путем обжига его с последующей плавкой в шахтной печи, или путем окислительной плавки на поду пламенной печи, или в конвертере. Эти сократительные, или концентрационные, штейновые плавки, производимые на практике одно- или многократно, конечной своей целью имеют получение чистого наиболее концентрированного штейна (файнштейна ), состоящего лишь из сульфидов ценных металлов с некоторым количеством последних, находящихся в свободном состоянии. Файнштейны, получаемые на практике, бывают двух родов в зависимости от их состава. При переработке окисленных новокаледонских руд, не содержащих в себе других кроме никеля ценных металлов, файнштейн представляет сплав сульфида никеля (Ni 3 S 2) с некоторым количеством металлического никеля. В результате же переработки сернистых канадских руд, содержащих и никель и медь, получаемый файнштейн представляет сплав сульфидов меди и никеля с некоторым количеством этих металлов в свободном состоянии. В зависимости от состава файнштейна меняется и их переработка на чистые металлы. Наиболее простой является переработка файнштейна, содержащего один только никель; переработка медно-никелевого файнштейна сложнее и м.б. осуществлена различными путями. Переработка окисленных руд на штейн с серосодержащими добавками (гипсом) была предложена Гарниери в 1874 г. Переработка этих руд во Франкенштейне (Германия) производилась следующим образом. К рудной смеси, содержавшей 4,75 % Ni, прибавлялось 10% гипса или 7% ангидрита и 20% известняка; сюда же прибавлялось и некоторое количество плавикового шпата. Вся эта смесь тщательно перемешивалась, измалывалась и затем прессовалась в кирпичи, которые после высушивания проплавлялись в шахтной печи расходом кокса в 28-30% от веса руды. Суточная производительность шахтной печи доходила до25т руды. Сечение печи на уровне фурм равно 1,75 м 2 ; высота ее 5 м. Нижняя часть шахты на высоту 2 м имела ватер-жакеты. Шлаки сильно кислые; в них терялось 15% Ni. Состав роштейна: 30-31% Ni; 48-50% Fe и 14-15% S. Роштейн гранулировался, дробился, обжигался и переплавлялся в вагранке в смеси с 20% кварца и при расходе кокса в 12-14% от веса обожженного роштейна на концентрированный штейн следующего среднего состава: 65% Ni, 15% Fe и 20% S. Последний конвертировался на файнштейн: 77,75% Ni, 21% S, 0,25-0,30% Fe и 0,15-0,20% Сu. Тщательно измельченный файнштейн подвергается обжигу в пламенных печах (с ручным перегребанием или механическим) до полного удаления серы. В конце обжига к обжигаемой массе прибавляют некоторое количество NaNО 3 и Na 2 CО 3 не только для того, чтобы облегчить выгорание серы, но и для того, чтобы присутствующие иногда в штейне As и Sb перевести в сурьмяно- и мышьяковокислые соли, которые затем выщелачиваются водою из обожженного продукта. Полученная в результате обжига NiO подвергается восстановлению, для чего закись никеля смешивается с мукой и водой и из полученного теста формуют кубики, которые затем нагревают в тиглях или ретортах. Под конец восстановления температура поднимается до 1250°С, что способствует свариванию отдельных восстановленных частиц Ni в сплошную массу.

Фирма International Nickel Со. перерабатывает свои сернистые руды след. обр. Рудная плавка в зависимости от их крупности ведется либо в шахтных либо в пламенных печах. Кусковые руды подвергаются предварительному обжигу в кучах; продолжительность обжига от 8 до 10 месяцев. Обожженная руда плавится в смеси с некоторым количеством необожженной руды в шахтных печах. Флюсов не добавляется, т. к. руда самофлюсующаяся. Расход кокса 10,5% от веса рудной смеси. В сутки проплавляется в печи около 500 т руды. Штейн рудной плавки подвергается конвертированию на файнштейн. Конвертерный шлак частью возвращается в конвертер, частью идет в шихту рудной плавки. Состав руд и продуктов приведен в табл.:

Мелкая руда подвергается обжигу в Веджа печах до содержания серы в 10-11% и затем плавке в пламенной печи. Конвертерный шлак, содержащий 79,5% (Сu + Ni), 20% S и 0,30% Fe, перерабатывается процессом Орфорда, состоящим в переплавке файнштейна в присутствии Na 2 S. Последний вызывает расслаивание продуктов плавки на два слоя: верхний, представляющий сплав Cu 2 S + Na 2 S, и нижний, содержащий почти чистый сульфид никеля. Каждый из этих слоев перерабатывается на соответствующий металл. Верхний, медьсодержащий, слой по отделении от него Na 2 S подвергается конвертированию, а нижний, никелевый, слой подвергается хлорирующему обжигу, выщелачиванию (причем он освобождается от некоторого содержащегося в нем количества меди), и полученная т. о. закись никеля восстанавливается. Некоторое количество медно-никелевого файнштейна подвергается окислительному обжигу и последующей восстановительной плавке на медно-никелевый сплав, известный под названием Монель-металла.

Фирма Mond Nickel Со. свои руды обогащает; полученные концентраты подвергаются спекающему обжигу на машинах Dwight- Lloyd’a, агломерат с которых идет в шахтную печь. Штейн рудной плавки подвергается конвертированию, полученный файнштейн перерабатывается способом Mond ’а, для чего файнштейн дробится, обжигается и выщелачивается H 2 SО 4 для удаления большей части меди в виде CuSО 4 . Остаток, содержащий NiO с некоторым количеством меди, высушивается и поступает в аппарат, где он восстанавливается при 300°С водородом (водяной газ). Восстановленный, мелко раздробленный никель поступает в следующий аппарат, где он приводится в соприкосновение с СО; при этом образуется летучий карбонат никеля - Ni(CO) 4 , который переводится в третий аппарат, где поддерживается температура 150°С. При этой температуре Ni(CO) 4 разлагается на металлический Ni и СО. Получающийся этим путем металлический никель содержит 99,80% Ni.

Помимо указанных двух способов получения никеля из медно-никелевого файнштейна существует еще способ Hybinette, дающий возможность получать никель электролитическим путем. Электролитический никель содержит: 98,25% Ni; 0,75% Со; 0,03% Сu; 0,50% Fe; 0,10% С и 0,20% Рb.

Вопрос о производстве никеля в СССР имеет столетнюю историю. Уже в 20-х годах прошлого века были известны никелевые руды на Урале; одно время уральские месторождения никелевых руд, содержащие около 2% Ni, рассматривались как один из главных источников сырья для мировой никелевой промышленности. После открытия никелевых руд на Урале М. Даниловым, П. А. Демидовым и Г. М. Пермикиным был произведен целый ряд опытов по их переработке. В Ревдинске за 1873-77 гг. было получено 57,3 т металлического никеля. Но дальнейшее разрешение поставленной задачи было прекращено после открытия более богатых и мощных месторождений никелевых руд в Новой Каледонии. Вопрос об отечественном никеле был снова поставлен на разрешение под влиянием обстоятельств, вызванных войной 1914-18 гг. Летом 1915 года на Уфалейском заводе были произведены П. М. Бутыриным и В. Е. Васильевым опыты выплавки штейна в пламенной печи. В это же время велись опыты по извлечению никеля из Уфалейских руд в петербургском Политехническом институте Г. А. Кащенко под руководством проф. А. А. Байкова, а осенью 1915 г. велись пробные плавки в пламенной печи на заводе. Летом 1916 г. на Ревдинском заводе были произведены опыты выплавки медно-никелевых штейнов из бедных никелевых руд (0,86% Ni) и бедных медью колчеданов (1,5% Сu). Плавка велась в шахтной печи. В это же время в доменной печи проплавлялись ревдинские никельсодержащие бурые железняки на никелистый чугун (весь никель руды при этом концентрируется в чугуне), поставлявшийся по контракту с морским ведомством на его ленинградские заводы. Все перечисленные исследования вследствие целого ряда обстоятельств не получили в то время завершения в форме соответствующих заводских процессов. В последние годы проблема получения никеля из уральских руд снова встала на разрешение, и практическое осуществление ее, сообразно содержанию никеля в рудах, должно происходить в двух направлениях. Содержание никеля в уральских рудах - невысокое, и по нему руды делятся на два сорта: 1-й и 2-й. Руды 1-го сорта, пригодные для пирометаллургической переработки, в среднем содержат около 3% Ni; руды 2-го сорта - около 1,5% и ниже. Последние руды не м. б. подвергнуты переработке плавкой без предварительного их обогащения. Другая возможность переработки бедных никелевых руд - путь гидрометаллургический; он д. б. еще изучен. В настоящее время для переработки руд 1-го сорта на Урале строится завод.

Никель - простое вещество, пластичный, ковкий, переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой плёнкой оксида. Химически малоактивен. Относится к тяжелым цветным металлам, в чистом виде на земле не встречается — обычно входит в состав различных руд, высокой твердостью, хорошо полируется, является ферромагнетиком — притягивается магнитом, в периодической системе Менделеева обозначается символом Ni и имеет 28 порядковый номер.

Смотрите так же:

СТРУКТУРА

Имеет гранецентрированную кубическую решетку с периодом a = 0,35238 å нм, пространственная группа Fm3m. Эта кристаллическая структура устойчива к давлению, по меньшей мере 70 ГПа. При обычных условиях никель существует в виде b-модификации, имеющей гранецентрированную кубическую решётку (a = 3,5236 å). Но никель, подвергнутый катодному распылению в атмосфере h 2 , образует a-модификацию, имеющую гексагональную решётку плотнейшей упаковки (а = 2,65 å, с = 4,32 å), которая при нагревании выше 200 °С переходит в кубическую. Компактный кубический никель имеет плотность 8,9 г/см 3 (20 °С), атомный радиус 1,24 å

СВОЙСТВА

Никель - ковкий и тягучий металл, из него можно изготовлять тончайшие листы и трубки. Предел прочности при растяжении 400-500 Мн/м 2 , предел упругости 80 Мн/м 2 , предел текучести 120 Мн/м 2 ; относительное удлинение 40%; модуль нормальной упругости 205 Гн/м 2 ; твёрдость по Бринеллю 600-800 Мн/м 2 . В температурном интервале от 0 до 631К (верхняя граница соответствует Кюри точке). Ферромагнетизм никеля обусловлен особенностями строения внешних электронных оболочек его атомов. Никель входит в состав важнейших магнитных материалов и сплавов с минимальным значением коэффициента теплового расширения (пермаллой, монель-металл, инвар и др.).

ЗАПАСЫ И ДОБЫЧА

Никель довольно распространён в природе - его содержание в земной коре составляет около 0,01%(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (до 8%). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13 - 0,41% Ni.
В растениях в среднем 5·10 −5 весовых процентов никеля, в морских животных - 1,6·10 −4 , в наземных - 1·10 −6 , в человеческом организме - 1…2·10 −6 .

Основную массу никеля получают из гарниерита и магнитного колчедана.
Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5-8% Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.
Карбонильный способ (метод Монда): Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель , термическим разложением которого выделяют особо чистый металл.
Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al 2 O 3

ПРОИСХОЖДЕНИЕ

Месторождения сульфидных медно-никелевых руд связаны с лополитоподобными или плитообразными массивами расслоенных габброидов, приуроченных к зонам глубинных разломов на древних щитах и платформах. Характерной особенностью медно-никелевых месторождений всего мира является выдержанный минеральный состав руд: пирротин, пентландит, халькопирит, магнетит; кроме них в рудах встречаются пирит, кубанит, полидимит, никелин, миллерит, виоларит, минералы группы платины, изредка хромит, арсениды никеля и кобальта, галенит, сфалерит, борнит, макинавит, валлерит, графит, самородное золото.

Экзогенные месторождения силикатных никелевых руд повсеместно связаны с тем или иным типом коры выветривания серпентенитов. при выветривании происходит стадийное разложение минералов, а также перенос подвижных элементов, с помощью воды из верхних частей коры в нижние. Там эти элементы выпадают в осадок в виде вторичных минералов.
В месторождениях этого типа заключены запасы никеля в 3 раза превышающие его запасы в сульфидных рудах, а запасы некоторых месторождений достигают 1 млн т. и более никеля. Крупные запасы силикатных руд сосредоточены на Новой Каледонии, Филиппинах, Индонезии, Австралии и др. странах. Среднее содержание в них никеля равно 1.1-2%. Кроме того в рудах часто содержится кобальт.

ПРИМЕНЕНИЕ

Подавляющая часть никеля используется для получения сплавов с другими металлами (fe, cr, cu и др.), отличающихся высокими механическими, антикоррозионными, магнитными или электрическими и термоэлектрическими свойствами. В связи с развитием реактивной техники и созданием газотурбинных установок особенно важны жаропрочные и жаростойкие хромоникелевые сплавы. Сплавы никеля используются в конструкциях атомных реакторов.

Значительное количество никеля расходуется для производства щелочных аккумуляторов и антикоррозионных покрытий. Ковкий никель в чистом виде применяют для изготовления листов, труб и т.д. Он используется также в химической промышленности для изготовления специальной химической аппаратуры и как катализатор многих химических процессов. Никель - весьма дефицитный металл и по возможности должен заменяться другими, более дешёвыми и распространёнными материалами.

Применяется при изготовлении брекет-систем (никелид титана), протезирования. Широко применяется при производстве монет во многих странах. В США монета достоинством в 5 центов носит разговорное название «никель». Также никель используется для производства обмотки струн музыкальных инструментов.

Никель (англ. Nickel) — Ni

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/A.08-10
Nickel-Strunz (10-ое издание) 1.AA.05
Dana (7-ое издание) 1.1.17.2
Dana (8-ое издание) 1.1.11.5
Hey’s CIM Ref 1.61

Никель

НИ́КЕЛЬ -я; м. [нем. Nickel] Химический элемент (Ni), серебристо-белый тугоплавкий металл с сильным блеском (применяется в промышленности).

Ни́келевый, -ая, -ое. Н. рудник. Н-ая руда. Н-ые сплавы. Н-ое покрытие.

ни́кель

(лат. Niccolum), химический элемент VIII группы периодической системы. Название от немецкого Nickel - имя злого духа, якобы мешавшего горнякам. Серебристо-белый металл; плотность 8,90 г/см 3 , t пл 1455°C; ферромагнитен (точка Кюри 358°C). Очень стоек к действию воздуха, воды. Главные минералы - никелин, миллерит, пентландит. Около 80% никеля идёт на никелевые сплавы. Применяют также для производства аккумуляторов, химической аппаратуры, для антикоррозионных покрытий (никелирование), как катализатор многих химических процессов.

НИКЕЛЬ

НИ́КЕЛЬ (лат. Niссolum), Ni, химический элемент с атомным номером 28, атомная масса 58,69. Химический символ элемента Ni произносится так же, как и название самого элемента. Природный никель состоит из пяти стабильных нуклидов (см. НУКЛИД) : 58 Ni (67,88 % по массе), 60 Ni (26,23 %), 61 Ni (1,19 %), 62 Ni (3,66 %) и 64 Ni (1,04 %). В периодической системе Д. И. Менделеева никель входит в группу VIIIВ и вместе с железом (см. ЖЕЛЕЗО) и кобальтом (см. КОБАЛЬТ) образует в 4-м периоде в этой группе триаду близких по свойствам переходных металлов. Конфигурация двух внешних электронных слоев атома никеля 3s 2 p 6 d 8 4s 2 . Образует соединения чаще всего в степени окисления +2 (валентность II), реже - в степени окисления +3 (валентность III) и очень редко в степенях окисления +1 и +4 (валентности соответственно I и IV).
Радиус нейтрального атома никеля 0,124 нм, радиус иона Ni 2+ - от 0,069 нм (координационное число 4) до 0,083 нм (координационное число 6). Энергии последовательной ионизации атома никеля 7,635, 18,15, 35,17, 56,0 и 79 эВ. По шкале Полинга электроотрицательность никеля 1,91. Стандартный электродݑː٠потенциал Ni 0 /Ni 2+ –0,23 B.
Простое вещество никель в компактном виде - блестящий серебристо-белый металл.
История открытия
Уже с 17 в. рудокопам Саксонии (Германия) была известна руда, которая по внешнему виду напоминала медные руды, но меди при выплавке не давала. Ее называли купферникель (нем. Kupfer - медь, а Nickel - имя гнома, подсовывавшего горнякам вместо медной руды пустую породу). Как оказалось впоследствии, купферникель - соединения никеля и мышьяка, NiAs. История открытия никеля растянулась почти на полвека. Первым вывод о присутствии в купферникеле нового «полуметалла» (то есть, по тогдашней терминологии, простого вещества, промежуточного по свойствам между металлами и неметаллами) сделал шведский металлург А. Ф. Кронстедт (см. КРОНСТЕДТ Аксель Фредрик) в 1751 году. Однако более двадцати лет это открытие оспаривалось и господствовала точка зрения, что Кронстедт получил не новое простое вещество, а какое-то соединение с серой то ли железа, то ли висмута, то ли кобальта, то ли какого-то другого металла.
Только в 1775 г., через 10 лет после смерти Кронстедта, швед Т. Бергман выполнил исследования, позволявшие заключить, что никель - это простое вещество. Но окончательно никель как элемент утвердился только в начале 19-го века, в 1804 году, после скрупулезных исследований немецкого химика И. Рихтера (см. РИХТЕР Иеремия Вениамин) , который для очистки провел 32 перекристаллизации никелевого купороса (сульфата никеля) и в результате восстановления получил чистый металл.
Нахождение в природе
В земной коре содержание никеля составляет около 8·10 -3 % по массе. Возможно, громадные количества никеля - около 17·10 19 т - заключены в ядре Земли, которое, по одной из распространенных гипотез, состоит из железоникелевого сплава. Если это так, то Земля примерно на 3 % состоит из никеля, а среди составляющих планету элементов никель занимает пятое место - после железа, кислорода, кремния и магния. Никель содержится в некоторых метеоритах, которые по составу представляют собой сплав никеля и железа (так называемые железоникелевые метеориты). Разумеется, как практический источник никеля такие метеориты значения не имеют. Важнейшие минералы никеля: никелин (см. НИКЕЛИН) (современное название купферникеля) NiAs, пентландит (см. ПЕНТЛАНДИТ) [сульфид никеля и железа состава (Fe,Ni) 9 S 8 ], миллерит (см. МИЛЛЕРИТ) NiS, гарниерит (см. ГАРНИЕРИТ) (Ni, Mg) 6 Si 4 O 10 (OH) 2 и другие никельсодержащие силикаты. В морской воде содержание никеля составляет примерно 1·10 -8 –5·10 -8 %
Получение
Значительную часть никеля получают из сульфидных медно-никелевых руд. Из обогащенного сырья сначала готовят штейн - сульфидный материал, содержащий, кроме никеля, еще и примеси железа, кобальта, меди и ряда других металлов. Методом флотации (см. ФЛОТАЦИЯ) получают никелевый концентрат. Далее штейн обычно подвергают обработке для отделения примесей железа и меди, а затем обжигают и образовавшийся оксид восстанавливают до металла. Существуют и гидрометаллургические методы получения никеля, в которых для его извлечения из руды используют раствор аммиака (см. АММИАК) или серной кислоты (см. СЕРНАЯ КИСЛОТА) . Для дополнительной очистки черновой никель подвергают электрохимическому рафинированию.
Физические и химические свойства
Никель - ковкий и пластичный металл. Он обладает кубической гранецентрированной кристаллической решеткой (параметр а=0,35238 нм). Температура плавления 1455°C, температура кипения около 2900°C, плотность 8,90 кг/дм 3 . Никель - ферромагнетик (см. ФЕРРОМАГНЕТИК) , точка Кюри (см. КЮРИ ТОЧКА) около 358°C
На воздухе компактный никель стабилен, а высокодисперсный никель пирофорен (см. ПИРОФОРНЫЕ МЕТАЛЛЫ) . Поверхность никеля покрыта тонкой пленкой оксида NiO, которая прочно предохраняет металл от дальнейшего окисления. С водой и парами воды, содержащимися в воздухе, никель тоже не реагирует. Практически не взаимодействует никель и с такими кислотами, как серная, фосфорная, плавиковая и некоторыми другими.
Металлический никель реагирует с азотной кислотой, причем в результате образуется нитрат никеля(II) Ni(NO 3) 2 и выделяется соответствующий оксид азота, например:
3Ni + 8HNO 3 = 3Ni(NO 3) 2 + 2NO + 4H 2 O
Только при нагревании на воздухе до температуры выше 800°C металлический никель начинает реагировать с кислородом с образованием оксида NiO.
Оксид никеля обладает основными свойствами. Он существует в двух полиморфных модификациях: низкотемпературной (гексагональная решетка) и высокотемпературной (кубическая решетка, устойчива при температуре выше 252°C). Имеются сообщения о синтезе оксидных фаз никеля состава NiO 1,33-2,0 .
При нагревании никель реагирует со всеми галогенами (см. ГАЛОГЕНЫ) с образованием дигалогенидов NiHal 2 . Нагревание порошков никеля и серы приводит к образованию сульфида никеля NiS. И растворимые в воде дигалогениды никеля, и нерастворимый в воде сульфид никеля могут быть получены не только «сухим», но и «мокрым» путем, из водных растворов.
С графитом никель образует карбид Ni 3 C, c фосфором - фосфиды составов Ni 5 P 2 , Ni 2 P, Ni 3 P. Никель реагирует и с другими неметаллами, в том числе (при особых условиях) с азотом. Интересно, что никель способен поглощать большие объемы водорода, причем в результате образуются твердые растворы водорода в никеле.
Известны такие растворимые в воде соли никеля, как сульфат NiSO 4 , нитрат Ni(NO 3) 2 и многие другие. Большинство этих солей при кристаллизации из водных растворов образует кристаллогидраты, например, NiSO 4 .7Н 2 О, Ni(NO 3) 2 .6Н 2 О. К числу нерастворимых соединений никеля относятся фосфат Ni 3 (PO 4) 2 и силикат Ni 2 SiO 4 .
При добавлении щелочи к раствору соли никеля(II) выпадает зеленый осадок гидроксида никеля:
Ni(NO 3) 2 + 2NaOH = Ni(OH) 2 + 2NaNO 3
Ni(OH) 2 обладает слабоосновными свойствами. Если на суспензию Ni(OH) 2 в щелочной среде воздействовать сильным окислителем, например, бромом, то возникает гидроксид никеля(III):
2Ni(OH) 2 + 2NaOH + Br 2 = 2Ni(OH) 3 + 2NaBr
Для никеля характерно образование комплексов. Так, катион Ni 2+ с аммиаком образует гексаамминовый комплекс 2+ и диакватетраамминовый комплекс 2+ . Эти комплексы с анионами образуют синие или фиолетовые соединения.
При действии фтора F 2 на смесь NiCl 2 и КСl возникают комплексные соединения, содержащие никель в высоких степенях окисления: +3 - (K 3 ) и +4 - (K 2 ).
Порошок никеля реагирует с оксидом углерода(II) СО, причем образуется легко летучий тетракарбонил Ni(CO) 4 , который находит большое практическое применение при нанесении никелевых покрытий, приготовлении высокочистого дисперсного никеля и т. д.
Характерна реакция ионов Ni 2+ с диметилглиоксимом, приводящая к образованию розово-красного диметилглиоксимата никеля. Эту реакцию используют при количественном определении никеля, а продукт реакции - как пигмент косметических материалов и для других целей.
Применение
Основная доля выплавляемого никеля расходуется на приготовление различных сплавов. Так, добавление никеля в стали позволяет повысить химическую стойкость сплава, и все нержавеющие стали обязательно содержат никель. Кроме того, сплавы никеля характеризуются высокой вязкостью и используются при изготовлении прочной брони. Сплав железа и никеля, содержащий 36-38% никеля, обладает удивительно низким коэффициентом термического расширения (это - так называемый сплав инвар), и его применяют при изготовлении ответственных деталей различных приборов.
При изготовлении сердечников электромагнитов широкое применение находят сплавы под общим названием пермаллои (см. ПЕРМАЛЛОЙ) . Эти сплавы, кроме железа, содержат от 40 до 80 % никеля. Общеизвестны применяемые в различных нагревателях нихромовые спирали, которые состоят из хрома (10-30 %) и никеля. Из никелевых сплавов чеканятся монеты. Общее число различных сплавов никеля, находящих практическое применение, достигает нескольких тысяч.
Высокая коррозионная стойкость никелевых покрытий позволяет использовать тонкие никелевые слои для защиты различных металлов от коррозии путем их никелирования. Одновременно никелирование придает изделиям красивый внешний вид. В этом случае для проведения электролиза используют водный раствор двойного сульфата аммония и никеля (NH 4) 2 Ni(SO 4) 2 .
Никель широко используют при изготовлении различной химической аппаратуры, в кораблестроении, в электротехнике, при изготовлении щелочных аккумуляторов, для многих других целей.
Специально приготовленный дисперсный никель (так называемый никель Ренея) находит широкое применение как катализатор самых разных химических реакций. Оксиды никеля используют при производстве ферритных материалов и как пигмент для стекла, глазурей и керамики; оксиды и некоторые соли служат катализаторами различных процессов.
Билогическая роль
Никель относится к числу микроэлементов (см. МИКРОЭЛЕМЕНТЫ) , необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается в ороговевших тканях, особенно в перьях. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям - у растений появляются уродливые формы, у животных - заболевания глаз, связанные с накоплением никеля в роговице. Токсическая доза (для крыс) - 50 мг. Особенно вредны летучие соединения никеля, в частности, его тетракарбонил Ni(CO) 4 . ПДК соединений никеля в воздухе составляет от 0,0002 до 0,001 мг/м 3 (для различных соединений).


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "никель" в других словарях:

    НИКЕЛЬ - (симв. Ni), металл с атомным весом 58,69, порядковый номер 28, принадлежит вместе с кобальтом и железом к VIII группе и 4 му ряду периодической системы Менделеева. Уд. в. 8,8, t° плавления 1 452°. В своих обычных соединениях Н.… … Большая медицинская энциклопедия

    - (символ Ni), серебристо белый металл, ПЕРЕХОДНЫЙ ЭЛЕМЕНТ, открытый в 1751 г. Его основные руды: сульфидные никеле железные руды (пентландит) и ар сенид никеля (никелин). У никеля сложный процесс очищения, включающий дифференцированное разложение… … Научно-технический энциклопедический словарь

    - (нем. Nickel). Металл серебристо белого цвета, в чистом виде не встречается. В последнее время употребляется на выделку столовой и кухонной посуды. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. НИКЕЛЬ нем. Nickel … Словарь иностранных слов русского языка

    Никель - представляет собой относительно твердый серовато белый металл с температурой плавления 1453 град. С. Он является ферромагнетиком, отличается ковкостью, пластичностью, прочностью, а также стойкостью к коррозии и окислению. Никель в основном… … Официальная терминология



error: