Какое сопротивление обмоток асинхронного двигателя. Как проверить электродвигатель - простые советы электрикам

При измерении сопротивления обмоток при постоянном токе имеют значение не только абсолютная величина сопротивления и соответствие ее расчетной, но и симметричность сопротивлений отдельных фаз. Одинаковое, но значительно отличающееся от расчетного значение сопротивления каждой фазы может быть вызвано ошибкой в числе витков катушки, применением провода, отличающегося сечением от расчетного, либо отличием средней длины витка от расчетной. Разные значения сопротивлений отдельных фаз могут быть следствием многих причин - ошибок в схеме соединения катушек и катушечных групп, витковых замыканий и плохого качества паек. Допустимое отклонение фактического значения сопротивления от расчетного можно принять равным ±2%, а допустимое значение расхождения сопротивления отдельных фаз - не более 2% среднего значения сопротивления фаз.
Измерение сопротивления обмоток при постоянном токе производят по методу амперметра - вольтметра, а также электрическими мостами. Измеряют обмотки при их практически холодном состоянии (температура любой части электродвигателя отличается от температуры окружающей среды не более чем на 3°С). Температуру окружающего воздуха замеряют не менее чем в трех местах на расстоянии 1-2 м от электродвигателя. Термометры нужно располагать на уровне оси электродвигателя в местах, защищенных от потоков воздуха, создаваемых другими электродвигателями, вентиляторами или случайными причинами. За расчетную температуру принимают среднюю из показаний термометров. Схема подключения измеряемого сопротивления, источника питания и приборов приведена на рис. 1. В качестве источника питания может быть применена аккумуляторная батарея, создающая в обмотке ток до 20% номинального. Время включения тока при каждом измерении не должно превышать 1 мин.

Рис. 1. Метод амперметра - вольтметра.
1Х - ток в измеряемом сопротивлении; /в -ток в ветви вольтметра; 1 - ток по амперметру; Rx - измеряемое сопротивление; RB - сопротивление вольтметра; К - рубильник; R - добавочное регулируемое сопротивление.
Во избежание повреждения вольтметра импульсами э.д.с. при резком изменении тока в цепи измерения необходимо сначала включить нижний рубильник (у аккумуляторной батареи) при отключенном верхнем рубильнике (у вольтметра); этот рубильник включают только тогда, когда ток в измеряемом сопротивлении установится. Регулировку производят с помощью добавочного сопротивления.
Искомое значение Rx определяется следующим образом:

где U - замеренное напряжение, В; RB- внутреннее сопротивление вольтметра, Ом; 1Х--ток, проходящий через сопротивление Rx, А; -ток, проходящий через вольтметр, А.



Рис. 2. Сдвоенный щуп для измерения сопротивлений. Ток аккумуляторной батареи

Преобразуя последнее выражение, находим:

Когда сопротивление вольтметра превосходит измеряемое сопротивление более чем в 100 раз, отношение U/RB мало по сравнению с / и можно с достаточной точностью принять, что RX=U/I.
При сборке схемы следует обратить особое внимание на надежность контактных соединений самой схемы. В частности, чтобы исключить влияние переходного сопротивления контактов, при измерении сопротивления обмотки ротора цепь вольтметра следует подключать не к поводкам постоянно смонтированных щеток, а непосредственно к контактным кольцам через специальные щетки.
Для раздельного подключения к испытуемому сопротивлению цепей вольтметра и амперметра иногда применяют специальные сдвоенные щупы (рис. 2). Щупы имеют по две иглы - неподвижную 2, ввинченную или запрессованную в текстолитовый наконечник 1, и подвижную 3, свободно проходящую через наконечник и отжимаемую пружиной 4. Игла 3 соединена с помощью проводника 5 с амперметром, а игла 2- с вольтметром. Щуп заключен во втулку 6, закрытую изолятором 7.
При подсоединении щупов (рис. 3) сначала с измеряемым сопротивлением соприкасаются подвижные иглы, а затем при дальнейшем нажатии на щупы - неподвижные. При снятии щупов вначале разрывается цепь вольтметра, потом уже цепь тока. Тем самым вольтметр предохраняется от толчков э. д. е., возникающих при размыкании тока.


Рис. 3. Подключение сдвоенных щупов.
1 - измеряемое сопротивление; 2 - сдвоенные щупы; 3 - неподвижные иглы щупа; 4 - подвижные иглы щупа; 5 - реостат.
Следует отметить, что при пользовании обычными щупами (иглой с изолированной ручкой) пришлось бы применить четыре щупа и, следовательно, занять работой два человека. При пользовании сдвоенными щупами ту же работу может выполнить один человек.
При измерении сопротивлений обмоток электродвигателя, если выведены только три выводных конца обмотки (глухое соединение), следует замерить сопротивление между каждой парой выводных концов (Ri-2, R2-3, Яз-О если эти сопротивления равны, то сопротивление каждой фазы (R1, R2, R3,) составляет:
при соединении в звезду (рис. 4)


при соединении в треугольник (рис. 5)

Замеры сопротивления обмоток производят при значениях тока 10, 15 и 20% номинального*. За расчетное принимают среднее из трех измерений. Измеренные сопротивления различных фаз обмоток статора и ротора не должны отличаться друг от друга более чем на ±2% среднего значения, а от ранее измеренных или от заводских данных - более чем на 2%.



Рис. 4. Измерение сопротивления обмотки при соединении фаз в треугольник.

Рис. 5. Измерение сопротивления обмотки при соединении фаз в звезду.

С большой точностью измерение сопротивления обмоток при постоянном токе можно производить электрическими мостами. Как известно, принцип действия моста состоит в том, что измеряемое сопротивление Rx и три известных регулируемых резистора Ri, Я2 и Яз включают таким образом, чтобы образовался замкнутый четырехугольник. К двум диагонально расположенным углам четырехугольника прикладывают напряжение от источника постоянного тока - обычно от аккумуляторной батареи, а к двум другим углам четырехугольника подключают чувствительный гальванометр, у которого нулевое положение стрелки расположено посередине шкалы.
Подбором сопротивлений R1, R2 и R3 можно добиться того, чтобы через гальванометр не проходил ток. Это возможно, если произведения противоположно расположенных сопротивлений равны между собой, т. е.
RxR2 = RlR3.

Этот простой одинарный мост пригоден для измерения сравнительно большого сопротивления обмоток мелких двигателей, поскольку измеряется фактически искомое сопротивление самих обмоток и сопротивление соединительных проводов и контактов, которым при сравнительно большом сопротивлении обмоток можно пренебречь. Применение одинарного моста ограничено измерением сопротивлений 1 Ом и более.

*Измерение при токе, большем 20% номинального, может привести к искажению результатов из-за нагревания измеряемого сопротивления.

Более универсальным, пригодным для измерения сопротивлений как больших, так и менее 1 Ом, является двойной мост Томпсона, при измерении которым сопротивление соединительных проводов и контактов практически не имеет значения. Однако эти мосты громоздки и дороги.
По конструктивному исполнению в зависимости от способа, подбора и регулировки переменных сопротивлений мосты разделяются на штепсельные, рычажные и линейные (струнные).
В штепсельных мостах (рис. 6) включение переменных резисторов производят при установке штепселей в гнезда, к которым присоединены эти переменные резисторы. При хорошей подгонке штепселей к гнездам можно добиться очень точных результатов измерений. Недостатком штепсельных мостов является большая затрата времени при производстве замеров.



Рис. 6. Штепсельный мост



Рис. 7. Рычажный мост.
В рычажных мостах (рис. 7) включение переменных резисторов достигается перемещением рычага по набору контактов, к которым подключены переменные резисторы. При чистых хороших контактах точность измерений на рычажных мостах не уступает точности измерений на штепсельных мостах при значительно более высокой скорости замеров.
В линейных мостах каждый из переменных резисторов выполнен в виде проволоки (струны) из материала, обладающего высоким удельным сопротивлением, по которой может передвигаться подвижный контакт (нож). В некоторых конструкциях (рис. 8) струна располагается по окружности. В линейных мостах в зависимости от положения подвижного контакта изменяется соотношение переменных сопротивлений. Линейные мосты являются самыми дешевыми, работа на них так же быстра, как и на рычажных мостах, однако точность измерений ниже, чем на других типах мостов. Применяются линейные мосты только для измерений, не требующих высокой точности.



Рис. 8. Линейный мост.
Как известно, сопротивление проводника при постоянном токе зависит от материала проводника, его размеров и его температуры. Расчетные значения сопротивлений обмоток обычно относят к температуре 15°С, и, если измерение сопротивления производилось при другой температуре, то его пересчитывают к значению, соответствующему 15°С.

Выпускаемые сегодня промышленностью, являются надежными силовыми агрегатами. Они способны работать десятки лет при своевременном обслуживании и ремонте. Для этого необходимо регулярно контролировать состояние электродвигателей, измеряя сопротивление обмотки электродвигателя. Даже в том случае, если оборудование не работало какое-то время, необходимо обязательно проконтролировать состояние изоляции, которая является гигроскопичной и может изменить свои свойства под воздействием влажности воздуха. Измерение сопротивления изоляции электродвигателя позволит определить, требуется ли просушка или в обмотке есть дефект, требующий немедленного устранения. Если удалось установить, что имеет место понижение сопротивления, двигатель должен быть остановлен и предоставлен в распоряжение мастера для выявления неисправности.

Проверка сопротивления изоляции электродвигателя перед пуском

В последнее время приходится регулярно сталкиваться с запуском оборудования, простоявшего на складе или законсервированного до лучших времен. За время вынужденного или планового простоя изоляция обмотки мотора под воздействием влаги могла потерять свои эксплуатационные характеристики. Снижение сопротивление может быть довольно чувствительным, поэтому прежде чем включать машину в сеть, должна быть произведена проверка сопротивления изоляции электродвигателя. Должна быть проверена каждая обмотка относительно корпуса, а также сопротивление между обмотками. Полученные результаты должны соответствовать нормативам ГОСТа, ТУ с обязательным учетом температуры, при которых производилось измерение сопротивления обмоток электродвигателя.

Правила технической эксплуатации машин с электродвигателя гласят, что при температуре изоляции, равной по значению температуре окружающего воздуха, сопротивление обмотки низковольтного оборудования должно не превышать 1 МОм. Сопротивление обмотки электродвигателя машины постоянного тока - не менее 0,5 МОм. Для изменений используется мегомметр, удобный и компактный прибор, состоящий из омметра и магнитоэлектрического генератора постоянного тока. Сопротивление изоляции , имеющего номинальное напряжение до 660В, следует измерять при напряжении в 500В. Если производится контроль сопротивления обмоток машины с номинальным напряжением до 3000 В, то применяют мегаомметры с напряжением в 1000В. Измерение сопротивления обмотки электродвигателя с номинальным напряжением более 3000В используются приборы со значением в 2500В. В том случае, если исследуемый двигатель имеет обмотку, соединенную через конденсатор с корпусом, то перед измерением необходимо конденсатор отключить от обмотки.

Как правильно производить измерение сопротивления изоляции

Для того чтобы данные имели смысл - необходимо правильно производить измерение сопротивления изоляции . Работы должны производиться при температуре не ниже +5ºС. Должны быть выполнены следующие условия:

  • напряжение на измеряемом оборудовании должно быть отключено;
  • изоляция должна быть очищена от грязи и пыли;
  • с двигателя должно быть сняты остаточные заряды путем заземления на 2-3 минуты;
  • измерения производятся при устойчивом положении стрелки прибора;
  • для подключения к обмотке используют зажим мегомметра;
  • используется мегомметр, прошедший контрольную проверку.

Только в этом случае полученный результат можно считать достоверным. После произведенного замера испытываемый двигатель необходимо обязательно разрядить.

Электродвигатель – основная составляющая любой современной бытовой электротехники, будь то холодильник, пылесос или другой агрегат, использующийся в домашнем хозяйстве. В случае выхода какого-либо прибора из строя в первую очередь необходимо установить причину поломки. Чтобы узнать, в исправном ли состоянии находится мотор, его необходимо проверить. Нести аппарат в мастерскую для этого необязательно, достаточно располагать обычным тестером. Прочитав эту статью, вы узнаете, как проверить электродвигатель мультиметром, и сможете справиться с этой задачей самостоятельно.

Какие электромоторы можно проверить мультиметром?

Существуют разные модификации электрических двигателей, и перечень их возможных неисправностей достаточно велик. Большинство неполадок можно диагностировать, воспользовавшись обычным мультиметром, даже если вы не специалист в этой области.


Современные электродвигатели разделяются на несколько видов, которые перечислены ниже:

  • Асинхронный, на три фазы, с короткозамкнутым ротором. Этот тип электрических силовых агрегатов является самым популярным благодаря простому устройству, которое обеспечивает легкую диагностику.
  • Асинхронный конденсаторный, с одной или двумя фазами и короткозамкнутым ротором. Такой силовой установкой обычно оснащается бытовая техника, запитывающаяся от обычной сети на 220В, наиболее распространенной в современных домах.
  • Асинхронный, оснащенный фазным ротором. Это оборудование имеет более мощный стартовый момент, чем моторы с короткозамкнутым ротором, в связи с чем его используют как привод в крупных силовых устройствах (подъемники, краны, электростанки).
  • Коллекторный, постоянного тока. Такие двигатели широко используются в автомобилях, где они играют роль привода вентиляторов и насосов, а также стеклоподъемников и дворников.
  • Коллекторный, переменного тока. Этими моторами оснащается ручной электроинструмент.

Первый этап любой диагностики – визуальный осмотр. Если даже невооруженным взглядом видны сгоревшие обмотки или отломанные части мотора, понятно, что дальнейшая проверка бессмысленна, и агрегат нужно везти в мастерскую. Но зачастую осмотра недостаточно, чтобы выявить неполадки, и тогда необходима более тщательная проверка.

Ремонт асинхронных двигателей

Наиболее распространены асинхронные силовые агрегаты на две и на три фазы. Порядок их диагностики не совсем одинаков, поэтому следует остановиться на этом более подробно.

Трехфазный мотор

Существует два вида неисправностей электрических агрегатов, причем независимо от их сложности: наличие контакта в неположенном месте или его отсутствие.


В состав трехфазного мотора, работающего от переменного тока, входит три катушки, которые могут быть соединены в форме треугольника или звезды. Имеется три фактора, определяющих работоспособность этой силовой установки:

  • Правильность намотки.
  • Качество изоляции.
  • Надежность контактов.


Замыкание на корпус обычно проверяется при помощи мегомметра, но если его нет, можно обойтись обычным тестером, выставив на нем максимальное значение сопротивлений – мегаомы. Говорить о высокой точности измерений в этом случае не приходится, но получить приблизительные данные возможно.

Перед тем, как измерить сопротивление, убедитесь, что двигатель не подключен к электросети, иначе мультиметр придет в негодность. Затем нужно произвести калибровку, поставив стрелку на ноль (щупы при этом должны быть замкнуты). Проверять исправность тестера и правильность настроек, кратковременно касаясь одним щупом другого, необходимо каждый раз перед измерением величины сопротивление.

Приложите один щуп к корпусу электромотора и убедитесь, что контакт имеется. После этого снимите показания прибора, касаясь двигателя вторым щупом. Если данные в пределах нормы, соединяйте второй щуп с выводом каждой фазы поочередно. Высокий показатель сопротивления (500-1000 и более МОм) свидетельствует о хорошей изоляции.

Как проверить изоляцию обмоток показано в этом видео:

Затем необходимо убедиться, что все три обмотки целы. Проверить это можно, прозвонив концы, которые выходят в коробку выводов электродвигателя. Если обнаружен обрыв какой-либо обмотки, диагностику следует прекратить до устранения неисправности.

Следующий пункт проверки – определение короткозамкнутых витков. Довольно часто это можно увидеть при визуальном осмотре, но если внешне обмотки выглядят нормально, то установить факт короткого замыкания можно по неодинаковому потреблению электротока.

Двухфазный электрический двигател ь

Диагностика силовых агрегатов этого типа несколько отличается от вышеописанной процедуры. При проверке мотора, оснащенного двумя катушками и запитывающегося от обычной электросети, его обмотки нужно прозвонить при помощи омметра. Показатель сопротивления рабочей обмотки должен быть на 50% меньше, чем у пусковой.


Обязательно должно измеряться сопротивление на корпус – в норме оно должно быть очень большим, как и в предыдущем случае. Низкий показатель сопротивления говорит о необходимости перемотки статора. Конечно, для получения точных данных такие измерения лучше проводить при помощи мегомметра, но такая возможность в домашних условиях имеется редко.

Проверка коллекторных электромоторов

Разобравшись с диагностикой асинхронных моторов, перейдем к вопросу о том, как прозвонить электродвигатель мультиметром, если силовой агрегат относится к коллекторному типу, и каковы особенности таких проверок.


Чтобы правильно проверить работоспособность этих двигателей при помощи мультиметра, нужно действовать в следующем порядке:

  • Включить тестер на Ом и попарно замерить сопротивление коллекторных ламелей. В норме эти данные различаться не должны.
  • Измерить показатель сопротивления, приложив один щуп прибора к корпусу якоря, а другой – к коллектору. Этот показатель должен быть очень высоким, стремиться к бесконечности.
  • Проверить статор на целостность обмотки.
  • Измерить сопротивление, прикладывая один щуп к корпусу статора, а другой – к выводам. Чем выше будет полученный показатель, тем лучше.

Проверить электродвигатель при помощи мультиметра на межвитковое замыкание не получится. Для этого используется специальный аппарат, с помощью которого производится проверка якоря.

Подробно проверка двигателей электроинструмента показана в этом видео:

Особенности проверки электромоторов с дополнительными элементами

Зачастую электрические силовые установки оснащаются дополнительными компонентами, предназначенными для защиты оборудования или оптимизации его работы. Наиболее распространенными элементами, встраивающимися в мотор, являются:

Обычного мультиметра, как правило, достаточно для диагностики большинства неполадок, которые могут возникать в электромоторах. Если установить причину неисправности этим прибором не представляется возможным, проверка производится с помощью высокоточных и дорогостоящих аппаратов, которые имеются только у специалистов.

В этом материале содержится вся необходимая информация о том, как правильно проверить электродвигатель мультиметром в бытовых условиях. При выходе любой электротехники из строя самое главное – прозвонить обмотку мотора, чтобы исключить его неисправность, поскольку силовая установка имеет наиболее высокую стоимость по сравнению с другими элементами.

Материалы, применяемые при изоляции обмоток электродвигателей, не являются идеальными диэлектриками и в зависимости от своих физико-химических свойств являются в большей или меньшей степени токопроводящими. Сопротивление изоляции обмоток помимо конструкции самой изоляции и примененных материалов в значительной степени зависит также от влажности изоляции, механических повреждений и загрязнения поверхности.
О сопротивлении изоляции судят по значению проходящего через нее тока при приложении постоянного напряжения. Сопротивление изоляции измеряют мегаомметром с ручным или электрическим приводом либо сетевым мегаомметром, а также методом вольтметра.
Как известно, сопротивление изоляции измеряется в Омах, но так как в обмотках двигателей оно обычно 20 очень велико, то принято его выражать в миллионах ом (мегаомах), откуда и происходит название прибора. Мегаомметр (рис.1) представляет собой генератор постоянного тока, к выводам которого подсоединяется измеряемое сопротивление. Мегаомметр по существу фиксирует ток, проходящий через измеряемое сопротивление, но для удобства пользования шкала его измерительного прибора отградуирована непосредственно в мегаомах.

Рис. 1. Принципиальная схема мегаомметра.
Г - генератор постоянного тока; 1 - последовательная обмотка мегаомметра; 2 - параллельная обмотка мегаомметра; г1, г2 - ограничивающие сопротивления; Л - линейный зажим; 3 - зажим для присоединения заземления; К - кнопка включения; Э - корпус электродвигателя; О - обмотка электродвигателя.

В качестве измерительного прибора в мегаомметре применяется логометр, в котором взаимодействуют две обмотки - обмотка 1, соединенная последовательно с измеряемым сопротивлением, и обмотка 2, подключенная параллельно выводам генератора. Перед измерением производится упрощенная проверка мегаомметра: при вращении ручки и замкнутых накоротко зажимах мегаомметра показание прибора должно быть равно нулю, при разомкнутых - бесконечности. Обмотку перед измерением сопротивления ее изоляции на 1-2 мин заземляют для того, чтобы могущие быть в ее изоляции остаточные заряды стекли в землю и не повлияли на результаты испытания.
Провода, соединяющие мегаомметр с испытуемой обмоткой, а также с корпусом электродвигателя, должны иметь усиленную и надежную изоляцию. Ручку мегаом-
метра следует вращать по возможности равномерно, частота вращения должна быть около 150 об/мин. После разворота ручки мегаомметра до указанной частоты вращения включают кнопку К и тем самым испытуемая обмотка подключается к генератору мегаомметра. В мегаомметрах, у которых кнопки нет, после разворота ручки провод от зажима Л подключают к обмотке электродвигателя щупом (стальная острозаточенная игла с изолированной ручкой из текстолита или эбонита).
В начале замеров стрелка прибора делает бросок к началу шкалы, затем показание прибора медленно начинает увеличиваться и через некоторое время (15-60 с) стрелка устанавливается в некотором положении. Первоначальный бросок стрелки, соответствующий повышенному току генератора мегаомметра, вызывается зарядным током, определяемым емкостью изоляции, который быстро затухает. Относительно медленное движение стрелки после спада емкостного тока определяется токами абсорбции.
Изоляция не является монолитной, ее можно рассматривать состоящей из ряда слоев, т. е. последовательно соединенных емкостей. При приложении напряжения внутренние емкости в этой цепочке заряжаются через сопротивление предшествующих. При хорошей, сухой изоляции сопротивление каждого слоя велико и зарядный ток мал. Поэтому процесс заряда происходит медленно. При сырой изоляции процесс протекает быстро и также быстро стрелка прибора достигает своего максимального значения.
Установившееся показание прибора свидетельствует об окончании зарядки внутренних слоев изоляции (при этом ток абсорбции равен нулю). Это показание определяется только так называемым током сквозной проводимости, т. е. током, проходящим внутри изоляции по капиллярам, заполненным влагой, и током, проходящим по наружной поверхности изоляции, которая всегда в некоторой степени загрязнена и увлажнена.
Таким образом, судить о состоянии изоляции следует по значению тока сквозной проводимости и по скорости спадания тока абсорбции, которая определяется коэффициентом абсорбции
где R15 и R60 - сопротивления изоляции, отсчитанные соответственно через 15 и 60 с после достижения мегаомметром полной частоты вращения.
При хорошей, сухой изоляции коэффициент абсорбции составляет 1,5-2,0, а для увлажненной приближается к единице. Минимальной нормой следует считать &абс=1,3.
Сопротивление изоляции электрической машины относительно ее корпуса и сопротивление изоляции между обмотками при рабочей температуре должно быть не менее значения, получаемого по формуле, но не менее 0,5 МОм:
где U - номинальное напряжение машины, В; Р - номинальная мощность машины, кВт.
Сопротивление изоляции сильно зависит от температуры; с увеличением температуры оно снижается, а при уменьшении температуры повышается. Поэтому, если измерение сопротивления изоляции производится при температуре ниже рабочей, полученное по приведенной формуле сопротивление изоляции следует удваивать на каждые 20°С (полные или неполные) разности между рабочей температурой и той температурой, при которой выполнено измерение. Практически у электродвигателей с высушенной и неповрежденной изоляцией обмотки значение сопротивления изоляции всегда бывает выше нормируемого.
Примененное выше выражение «рабочая температура машины» нуждается в разъяснении.
Рабочей температурой любой части машины называют практически установившуюся температуру этой части, соответствующую номинальному режиму работы машины при неизменной температуре окружающей среды. Очевидно, что каждый тип и типоисполнение электродвигателя имеют свою рабочую температуру; она зависит от конструкции двигателя и его вентиляции, расчетных нагрузок и расчетной температуры охлаждающей среды и может быть приближенно определена тепловым расчетом, выполняемым при проектировании электродвигателя (или серии электродвигателей).
Определенная расчетом рабочая температура позволяет выбрать конструкцию изоляции двигателя и класс ее нагревостойкости таким образом, чтобы была обеспечена длительная работа электродвигателя при номинальном режиме. Поэтому по классу нагревостойкости изоляции, примененной в исполнении завода-изготовителя, можно судить о рабочей температуре электродвигателя. Эти сведения приведены ниже.

ГОСТ 1628-75 предписывает применять при измерении сопротивления изоляции обмоток электродвигателей с номинальным напряжением до 50U Б включительно мегаоммегр на 5ои Б и для электродвигателей напряжением выше 5UU Б - мегаомметр на 1000 Б. Рекомендуется применять мегаомметры, которые приводятся во вращение не вручную, а приводным электродвигателем. Помимо облегчения проведения испытаний это значительно повышает точность результатов.
Для электродвигателей, у которых выведены концы и начала всех фаз, измерение сопротивления изоляции производят между каждой фазой и корпусом. В этом случае допустимое минимальное сопротивление изоляции фазы должно быть повышено в 3 раза.
При измерении сопротивления изоляции каждой из электрических цепей все прочие цепи соединяют с корпусом машины. По окончании измерения сопротивления изоляции каждой электрически независимой цепи следует разрядить ее на заземленный корпус двигателя. Для обмоток на номинальные напряжения 3000 В и выше продолжительность разрядки для двигателей до 1000 кВт не менее 15 с и для электродвигателей мощностью более 1000 кВт - не менее 1 мин.


Рис. 2. Схема сетевого мегаомметра с полупроводниковыми диодами.
На рис. 2 представлена другая схема сетевого мегаомметра, где вместо кенотрона применены полупрородниковые диоды. Это делает сетевой мегаомметр более компактным, легким и более надежным в эксплуатации.
Схема соединения при измерении сопротивления изоляции методом вольтметра при питании от сети постоянного тока приведена на рис. 3.


Рис. 3. Измерение сопротивления изоляции вольтметром при питании от сети постоянного тока.
При измерении предварительно фиксируют напряжение питающей сети U1, для чего переключатель ставят в положение 1. Затем переключатель переводят в положение 2 и замеряют показание вольтметра U2. Так как при этом положении рубильника сопротивление вольтметра Яв (указанное на шкале вольтметра или приведенное в его паспорте) и измеряемое сопротивление R соединены последовательно, то падение напряжения в них будет распределяться прямо пропорционально значениям их сопротивлений.
Падение напряжения в вольтметре составит U2, В, а в изоляции U1-U2, В. Таким образом,



Для получения большей точности измерений вольтметр выбирают с большим собственным сопротивлением. Измерения можно производить не только от стационарной сети постоянного тока, но и от аккумуляторной батареи.
При измерении от электросети, один полюс которой может быть заземлен (на рис. 3 обозначено пунктиром), во избежание короткого замыкания следует подключать заземленный корпус электродвигателя 3 таким образом, чтобы он оказался соединенным с заземленным полюсом сети.
Наряду с питанием от источника постоянного тока можно применить для измерения также выпрямленный ток. На рис. 4 представлена схема измерения сопротивления изоляции при питании от сети переменного тока. Эта схема отличается от приведенной на рис. 3 наличием трансформатора 3 и выпрямителя 4. При питании выпрямленным током, если выпрямитель включен в сеть не непосредственно, а через трансформатор, отделяющий сеть переменного тока от цепи выпрямленного напряжения (как это указано на рис. 4), заземленный корпус электродвигателя может быть присоединен к любому из зажимов выпрямителя.
При ремонтах электродвигателей, связанных с переизолировкой активной стали, возникает необходимость проверить качество лаковой пленки после нанесения лака на листы и его запечки. Одним из показателей служит сопротивление постоянному току изоляции из отлакированных листов стали. В этом случае измерение сопротивления производят на приспособлении, изображенном на рис. 5.

Рис. 4. Измерение сопротивления изоляции вольтметром при питании от сети переменного тока.

Рис. 5. Приспособление для измерения сопротивления изоляции листов активной стали.
Пачку из 20 отлакированных листов 1 сжимают между электродами 2 и 3. Площадь каждого электрода составляет 1 дм2. Под электродом 3 устанавливают изолирующую подкладку 4. Листы сжимают рычагом с подвешенным на его конце грузом 5, который подбирается таким образом, чтобы давление, оказываемое на пачку листов, составляло 6000 Н (удельное давление 0,6 МПа). При указанных условиях сопротивление изоляции должно быть не менее 50 Ом.

Источником питания могут являться аккумуляторная батарея или выпрямитель напряжением 10-15 В. Потенциометром 6 устанавливают ток 0,1 А, при этом показание вольтметра должно быть не менее 5 В. Для предохранения амперметра от повреждения в цепь включают защитное сопротивление 7. Значение защитного сопротивления R, Ом, выбирают таким образом, чтобы при случайном коротком замыкании электродов 2 и 3 ток, проходящий через амперметр, не превосходил предельного значения, на которое рассчитан амперметр, т. е.

где U - напряжение источника питания, В; /амп - предельный ток амперметра, А.
При эксплуатации крупных электродвигателей под влиянием магнитной асимметрии или по некоторым другим причинам в замкнутом контуре (подшипники, вал, фундаментная плита), указанном на рис. 6, может возникнуть электрический ток. Этот ток разъедает шейки вала и вкладыши подшипников, из-за чего работа подшипников ухудшается и они быстро выходят из строя.

Рис. 6. Контур подшипниковых токов.
Для предотвращения возникновения этих токов указанный замкнутый контур разрывают установкой изолирующей текстолитовой или гетинаксовой прокладки между фундаментной плитой и подшипниковой стойкой. Болты, крепящие стойку к плите, изолируют изоляционными втулками и шайбами. При принудительной смазке подшипников во фланцах маслопровода устанавливают изоляционные прокладки и втулки.
В процессе эксплуатации и при ремонте установленную изоляцию необходимо периодически проверять - измерять сопротивления изоляции между подшипниковой стойкой и фундаментной плитой при полностью собранном маслопроводе мегаомметром на 500-1000 В.
Как видно на рис. 6, сопротивление изоляции не может быть проверено в собранном электродвигателе, так как изолированному подшипнику параллельна цепь, составленная валом, другим неизолированным подшипником и фундаментной плитой. Для измерения необходимо приподнять вал и заложить прокладку из электрокартона между шейкой вала и вкладышем неизолированного подшипника. Значение сопротивления не является нормируемым, но должно находиться на достаточно высоком уровне - не ниже 1 МОм, так как оно очень быстро и значительно снижается при загрязнении прокладок.
При ремонте, а также при эксплуатации крупных двигателей, температуру нагрева которых измеряют заложенными в обмотку термодетекторами, необходимо периодически измерять сопротивление изоляции этих термодетекторов, так как нарушение ее может представить серьезную опасность для обслуживающего персонала. Проверку производят мегаомметром на 250 В. Значение сопротивления не является нормируемым; показательным является его сравнение с результатами предыдущих измерений.

Починить или проверить своими руками асинхронный электродвигатель будет не тяжело большинству людей. Наиболее частой поломкой у асинхронных двигателей является износ подшипников, реже обрыв или отсыревание обмоток.

Большинство неисправностей можно выявить при внешнем осмотре.

Перед подключением или если долго не использовался мотор, необходимо у него проверить сопротивление изоляции мегомметром. Или если нет знакомого электрика с мегомметром, тогда не помешает в профилактических целях его разобрать и посушить обмотки статора несколько суток.

Прежде чем приступать к ремонту электродвигателя, необходимо проверить наличие напряжения и исправность магнитных пускателей, теплового реле, кабелей подключения и конденсатора, при его наличии в схеме.

Проверка электродвигателя внешним осмотром

Полноценный осмотр можно провести только после разборки электродвигателя, но сразу не спешите разбирать.

Все работы выполняются только после отключения электропитания, проверки его отсутствия на электродвигателе и принятия мер по предотвращению его самопроизвольного или ошибочного включения. Если устройство включается в розетку, тогда просто достаточно достать вилку из нее.

Если в схеме есть конденсаторы , тогда их выводы необходимо разрядить.

Проверьте перед началом разборки:

  1. Люфт в подшипниках. Как проверить и заменить подшипники читайте в этой статье.
  2. Проверьте покрытие краски на корпусе. Выгоревшая или отлущиваяся местами краска свидетельствует о нагревании двигателя в этих местах. Особенно обратите внимание на места расположения подшипников.
  3. Проверьте лапы крепления электродвигателя и вал вместе его соединения с механизмом. Трещины или отломанные лапы необходимо приварить.

После разборки по этой инструкции необходимо проверить:



Может выгореть как часть обмотки и возникнет межвитковое замыкание (на картинке слева), так и вся обмотка (на правой картинке). Несмотря на то, что в первом случае двигатель будет работать и перегреваться, все равно необходимо в любом случае перемотать заново обмотки.

Как прозвонить асинхронный электродвигатель

Если при внешнем осмотре ничего не выявлено, тогда необходимо продолжить проверку при помощи электротехнический измерений.

Как прозвонить электродвигатель мультиметром

Самым распространенным в домашнем хозяйстве электроизмерительным прибором является мультиметр. При его помощи можно прозвонить на целостность обмотки и на отсутствия пробоя на корпус.

В двигателях на 220 Вольт. Необходимо прозвонить пусковую и рабочую обмотки. При чем у пусковой сопротивление будет 1.5 раза больше, чем у рабочей. У некоторых электромоторов пусковая и рабочая обмотка будет иметь общий третий вывод. Подробнее об этом читайте здесь.

Например , у мотора от старой стиральной машины есть три вывода. Самое большое сопротивление будет между двумя точками, включающей в себя 2 обмотки, например 50 Ом. Если взять оставшейся третий конец, то это и будет общий конец. Если замерить между ним и 2 концом пусковой обмотки- получите величину около 30-35 Ом, а если между ним и 2 концом рабочей- около 15 Ом.

В двигателях на 380 Вольт, подключенных по схеме звезда или треугольник необходимо будет разобрать схему и прозвонить отдельно каждую из трех обмоток. У них сопротивление должно быть одинаковым от 2 до 15 Ом с отклонениями не более 5 процентов.

Обязательно необходимо прозвонить все обмотки между собой и на корпус. Если сопротивление не велико до бесконечности, значит есть пробой обмоток между собой или на корпус. Такие двигатели необходимо сдать в перемотку обмоток.

Как проверить сопротивление изоляции обмоток электродвигателя

К сожалению, мультиметром не проверить величину сопротивления изоляции обмоток электромотора для этого необходим мегомметр на 1000 Вольт с отдельным источником питания. Прибор дорогой, но он есть у каждого электрика на работе, которому приходится подключать или ремонтировать электродвигатели.

При измерении один провод от мегомметра присоединяют к корпусу в неокрашенном месте, а второй по очереди к каждому выводу обмотки. После этого измерьте сопротивление изоляции между всеми обмотками. При величине менее 0.5 Мегома- двигатель необходимо просушить.

Будьте внимательны , во избежание поражения электрическим током не прикасайтесь к измерительным зажимам во время проведения измерений.

Все измерения проводятся только на обесточенном оборудовании и по продолжительности не менее 2-3 минут.

Как найти межвитковое замыкание

Наиболее сложным является поиск межвиткового замыкания , при котором замыкается между собой лишь часть витков одной обмотки. Не всегда выявляется при внешнем осмотре, поэтому для этих целей применяется для двигателей на 380 Вольт- измеритель индуктивности. У всех трех обмоток должно быть одинаковое значение. При межвитковом замыкании у поврежденной обмотки индуктивность будет минимальной.

Когда Я был на практике 16 лет назад на заводе, электрики для поиска межвитковых замыканий у асинхронного мотора мощностью 10 Киловатт использовали шарик из подшипника диаметром около 10 миллиметров. Они вынимали ротор и подключали 3 фазы через 3 понижающих трансформатора на обмотки статора. Если все в порядке шарик движется по кругу статора, а при наличии межвиткового замыкания он примагничивается к месту его возникновения. Проверка должна быть кратковременной и будьте аккуратны шарик может вылететь!

Я уже давно работаю электриком и проверяю на межвитковое замыкание, если только двигатель на 380 В начинает сильно греться после 15-30 минут работы. Но перед разборкой, на включенном моторе проверяю величину потребляемого им тока на всех трех фазах. Она должна быть одинаковой с небольшой поправкой на погрешности измерений.



error: