Что такое потенциал электрического поля. Что такое разность потенциалов

Если в одну и ту же точку данного электростатического поля помещать пробные заряды, например, кратные q 0:

q о1 = q o , q o 2 = 2q o , ... , q on = nq o ,

то они будут характеризоваться различным значением потенциальной энергии:

W p 1 = W p , W p 2 = 2W p , ... , W pn = nW p .

Отношение потенциальной энергии к соответствующей величине пробного заряда всегда будет величиной постоянной, т. е.

Величину  называют потенциалом электростатического поля в данной точке.

Таким образом, для описания электростатического поля, кроме силовой характеристики  напряженности вектора , используют скалярную энергетическую характеристику этого поля  потенциал .

Используя формулу (18), найдем потенциал электростатического поля точечного заряда q на расстоянии r от него в СИ:

. (25)

Если среда, окружающая заряд безграничный диэлектрик с проницаемостью , то потенциал электростатического поля точечного заряда q на расстоянии r

. (26)

Если электростатическое поле создано системой точечных зарядов:

q 1 , q 2 , ... , q n ,

то на основании (18):

потенциал результирующего поля равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности,

. (27)

Из (25) следует, что заряд q 0, находящийся в произвольной точке электростатического поля с потенциалом , характеризуется потенциальной энергией W p = q 0 . (28)

Физический смысл имеет не сам потенциал поля, а разность потенциалов, поэтому работа сил этого поля над зарядом q o записывается в виде

А= W p 1  W p 2 = q 0 ( 1   2), (29)

где  1 и  2 потенциалы электрического поля начальной и конечной точек перемещения пробного заряда.

Если заряд q 0 из точки с потенциалом  удаляется на бесконечность, где потенциал равен нулю (  = 0) или перемещается из бесконечности в данную точку поля, то

А  = q 0 . (30)

В СИ за единицу потенциала принят вольт (В).

7. Связь между е и 

Электрическое поле полностью описывается векторной функцией
. В этом случае можно найти силу, действующую на пробный заряд в любой точке поля, и вычислить работу поля при любом перемещении пробного заряда.

Но электрическое поле также характеризуется и потенциалом .

Следовательно, между ними существует связь. Действительно, согласно (21) и (29), для единичного, положительного заряда (q o = +1 Кл) имеем

. (31)

Формула (31) остается справедливой не только для конечных, но и для элементарных перемещений
, т. е.

или
. (32)

Следовательно, проекция вектора
на направление
равна со знаком минус первой производной потенциала по данному направлению.

Если перемещение
параллельно оси Х, то
=dx, где единичный вектор оси Х; dx приращение координаты х. Исходя из этого, получим

(
) =dx = E x dx,

где Е х проекция вектора на ось Х.

Значит, с учетом (1.55) последнее выражение запишем в виде

, (33)

где символ частной производной свидетельствует о том, что функцию

= (х, у, z) необходимо дифференцировать только по х, считая у, и z постоянными.

Аналогично можно найти выражения для проекций Е у и Е z , т. е.

,
,
.

Зная проекции вектора на оси координат можно найти и сам вектор,

. (34)

В формуле (34) выражение в скобках является градиентом потенциала  (grad или ). Таким образом,

= grad  = . (35)

Знак «» означает, что вектор направлен в сторону убывания потенциала; векторный оператор «набла».

Электростатическое поле является потенциальным. Что такое потенциальное поле? Пусть электростатическое поле перемещает заряд между двумя точками. Работа сил поля по перемещению заряда между этими точками не зависит от формы пути, а зависит только от положения самих точек. Такое поле и называется потенциальным.

Так как электростатическое поле потенциально, то для него возможно ввести понятие потенциала.

Определение потенциала:

Потенциалом данной точки величина, численно равная работе, которую производят силы поля, чтобы переместить единичный положительный заряд из данной точки в бесконечность.

А почему нужно перемещать заряд в бесконечность? Считается, что в бесконечности поле равно нулю и потенциал равен нулю. Если ещё раз прочесть определение потенциала, то можно понять, что перемещая заряд в бесконечность, мы перемещаем его в точку, в которой потенциал равен нулю. В качестве точки с нулевым потенциалом можно было бы выбрать любую точку, но обычно выбирается бесконечность.

Ещё вопрос: почему важно для определения потенциала то, что электростатическое поле потенциально? В потенциальном поле работа не зависит от формы пути, значит потенциал может характеризовать поле в точке. Ведь если бы работа поля по перемещению заряда в бесконечность зависила от формы пути, то премещая заряд разными путями, мы получили бы различные значения потенциала для одной точки. Но работа в случае электростатического поля не зависит от формы пути, значит значение потенциала в точке будет только одно, а это означает, что потенциал может характеризовать поле в данной точке.

Для различных точек электростатического поля мы можем однозначно указать значение потенциала. Правда здесь есть одна тонкость: перед тем как указывать значение потенциала для любой точки нужно значение потенциала в определённой точке принять равным нулю (или какой-то определённой величине). Таковой точкой мы выбрали бесконечность. Здесь важно понять, что когда мы говорим о потенциале поля в данной точке, то другая точка, куда (или откуда) будем перемещать заряд, заранее известна.

Потенциал электростатического поля - скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

Энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

Следствие принци­па суперпозиции полей (потенциалы складываются алгебраически ).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение - разность значений потенциала в начальной и конечной точках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Единица разности потенциалов

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

1. Вектор напряженности направлен в сторону уменьшения потенциала.

2. Электрическое поле существует, если существует разность потенциалов.

3. Единица напряженности: -Напряженность поля равна

Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля.

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величи­на, равная

Поток вектора магнитной индук­ции Ф в через произвольную поверхность S равен

Теорема Гаусса для поля В: поток век­тора магнитной индукции через любую замкнутую поверхность равен нулю:

полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,

Проводники в электростатическом поле. Электроемкость уединенного проводника.

Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действо­вать электростатическое поле, в результа­те чего они начнут перемещаться. Переме­щение зарядов (ток) продолжается до тех пор, пока не установится равновесное рас­пределение зарядов, при котором электро­статическое поле внутри проводника обра­щается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напря­женность поля во всех точках внутри проводника равна нулю:

По гауссу

Величину

называют электроемкостью (или просто емкостью) уединенного проводника. Ем­кость уединенного проводника определяет­ся зарядом, сообщение которого провод­нику изменяет его потенциал на единицу.

Емкость проводника зависит от его размеров и формы, но не зависит от мате­риала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциа­ла. Сказанное не противоречит формуле, так как она лишь показывает, что емкость уединенного проводника прямо пропорциональна его заряду и обратно пропорциональна потенциалу.

Единица электроемкости - фарад (Ф): 1Ф



error: